First Name : \qquad
Last Name : \qquad
Section \& TA's name : \qquad

1. Let $A=\left[\begin{array}{llll}1 & 4 & 2 & 1 \\ 2 & 3 & 1 & 1 \\ 3 & 2 & 4 & 0 \\ 4 & 1 & 3 & 0\end{array}\right]$
(Use back pages for your calculation)
(a) Compute the rank of A

$$
\operatorname{rank}(A)=
$$

(b) Give a basis for $\operatorname{Im}(A)$

Basis of $\operatorname{Im}(A)$:
(c) Give a basis for $\operatorname{Ker}(A)$

Basis of $\operatorname{Ker}(A)$:
(Start your calculations below)
(Use this page for your calculations)
2. Let $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -1 \\ 0 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}1 \\ 0 \\ -1 \\ 3\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 4\end{array}\right]$. Are they linearly
independent?

$$
Y E S \square
$$

$$
N O \square
$$

Justification :

(Use this page for your calculations)
3. Let $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Find the least square solution of
$A \mathbf{x}=\mathbf{b}$

$$
\mathbf{x}_{0}=
$$

(Start your calculations below)
(Use this page for your calculations)

