Calculus II

Quiz \# 12
November 28th 2007

First Name :
Last Name : \qquad
Section \& TA's name : \qquad

1. Let $A=\left[\begin{array}{llll}1 & 2 & 4 & 1 \\ 0 & 2 & 2 & 0 \\ 2 & 3 & 7 & 1 \\ 1 & 1 & 3 & 0\end{array}\right]$
(Use the back page for your computations)
(a) Find a basis for $\operatorname{Im}(A)$

Basis for $\operatorname{Im}(A)$:
(Use this space below for computations)

Use this page for your computations
(b) Construct an orthonormal basis for $\operatorname{Im}(A)$: (Hint : (i) use the Gram-Schmidt method (ii) order the vectors in the previous basis from the simplest to the most complicated.)

Orthonormal basis :

(Use this space below for computations)

Use this page for your computations
(c) Find the orthogonal projection P onto $\operatorname{Im}(A)$

$$
P=
$$

Use this page for your computations
2. Let A be a 4×4 matrix such that $A^{t} \mathbf{x}=0$ only when \mathbf{x} is a multiple of $\left[\begin{array}{c}1 \\ -2 \\ 1 \\ 0\end{array}\right]$. Let $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$.
(a) Does the equation $A \mathbf{x}=\mathbf{b}$ have a solution? (Justify your answer)

$N O \square$

Justification :

(b) Is the solution unique? (Justify your answer)
$Y E S \square$
$N O \square$

Justification :

