Calculus II
Quiz \# 5
October 3th 2007

First Name : \qquad
Last Name : \qquad
Section \& TA's name : \qquad

1. Let $f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x y \\ x^{2}-y 2 \\ x^{2}+y^{2}\end{array}\right]$ and let $g\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}z+y \\ z+2 x\end{array}\right]$. Compute $g \circ f:$

$$
g \circ f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=
$$

2. Let f, g be the two transformations below. For each of them indicate whether it is linear (YES) or not (NO).

$$
\begin{aligned}
& f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
-7 x+11 y \\
5 x-13 y
\end{array}\right], \\
& g\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x+y \\
x y
\end{array}\right] . \\
& Y E S \square \quad \text { NO } \square \\
& Y E S \square \quad \text { NO } \square
\end{aligned}
$$

3. Let $A=\left[\begin{array}{cccc}1 & 1 & -1 & 2 \\ -3 & 0 & 4 & -1 \\ 2 & -3 & 5 & 1 \\ 7 & 1 & 0 & 1\end{array}\right]$ and let $\mathbf{x}=\left[\begin{array}{l}4 \\ 0 \\ 3 \\ 0\end{array}\right]$. Compute the second entry of $A \mathbf{x}$ without computing the whole vector $A \mathbf{x}$.

Result $=$
4. Let f be the linear transformation from \mathbb{R}^{2} into \mathbb{R}^{2} given first by reflecting about the line $y+x=0$ and then by reflecting about the line $y=0$. Compute the matrix A of this transformation :

5. Compute the inverse of the 2×2 matrix $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$.

$$
A^{-1}=
$$

