Calculus II
Quiz \# 6 \& 7
October 17th 2007

First Name :
Last Name :
Section \& TA's name : \qquad

1. Let $A=\left[\begin{array}{cccc}1 & -1 & -1 & 2 \\ -7 & 0 & 2 & -1 \\ 1 & -3 & 6 & 2 \\ 4 & 2 & 0 & 1\end{array}\right]$ and let $B=\left[\begin{array}{cccc}0 & 1 & -1 & 0 \\ -1 & 0 & -3 & 1 \\ 0 & -1 & 2 & 0 \\ 0 & 1 & 1 & 0\end{array}\right]$.

Compute the second column of the product $A B$.

2. Let $A=\left[\begin{array}{ccc}1 & -1 & 3 \\ 2 & 1 & -1\end{array}\right]$. Compute its transposed matrix A^{t} and the product $A \cdot A^{t}$.

3. Let $A=\left[\begin{array}{ccc}0 & \ln 3 & 0 \\ 0 & 0 & -\sqrt{5} \\ 0 & 0 & 0\end{array}\right]$. Compute A^{2} and A^{3}.

$$
\text { A- }]
$$

4. Let $\mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 2\end{array}\right]$ and let $\mathbf{y}=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ -1\end{array}\right]$.
(a) Compute the lengths $|\mathbf{x}|,|\mathbf{y}|$ of those vectors.

$$
|\mathbf{x}|=
$$

$$
|\mathbf{y}|=
$$

(b) Compute the dot product $\mathbf{x} \cdot \mathbf{y}$ and the angle θ of those vectors

$$
\mathbf{x} \cdot \mathbf{y}=
$$

Angle $\theta=$
5. Find a one-to-one parametrization of the line $7 x+5 y=3$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=
$$

6. Find an equation of the plane in \mathbb{R}^{3} containing the three points

$$
\mathbf{p}_{0}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{p}_{1}=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right] \text { and } \mathbf{p}_{2}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

equation :

7. Draw the image by the matrix $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ of the unit square, in \mathbb{R}^{2}, based on the vectors $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
8. Give the augmented matrix describing the following system of linear equations

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3}-4 x_{4} & =1 \\
-x_{1}-x_{2}-5 x_{3}+2 x_{4} & =-1 \\
3 x_{2}+x_{3}-4 x_{4} & =2 \\
x_{1}+x_{2}+x_{3}=x_{4} & =0
\end{aligned}
$$

$$
[A \mid b]=
$$

9. Using row operations, reduce the following matrix to an upper triangular one

$$
A=\left[\begin{array}{rrrr}
1 & -1 & 3 & 0 \\
2 & 1 & -3 & 1 \\
0 & 1 & 2 & 1
\end{array}\right]
$$

