Georgia Tech

School of Mathematics Math 1502

CALCULUS II
Quiz # 6 & 7
October 17th 2007

 First Name : ______

 Last Name : ______

 Section & TA's name : ______

1. Let
$$A = \begin{bmatrix} 1 & -1 & -1 & 2 \\ -7 & 0 & 2 & -1 \\ 1 & -3 & 6 & 2 \\ 4 & 2 & 0 & 1 \end{bmatrix}$$
 and let $B = \begin{bmatrix} 0 & 1 & -1 & 0 \\ -1 & 0 & -3 & 1 \\ 0 & -1 & 2 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

Compute the second column of the product AB.

.

 $Math\ 1502,\ October\ 17th\ 2007$

2. Let
$$A = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & -1 \end{bmatrix}$$
. Compute its transposed matrix A^t and the product $A \cdot A^t$.

$$A^{t} = \begin{bmatrix} & & \\$$

 $Math\ 1502,\ October\ 17th\ 2007$

3. Let
$$A = \begin{bmatrix} 0 & \ln 3 & 0 \\ 0 & 0 & -\sqrt{5} \\ 0 & 0 & 0 \end{bmatrix}$$
. Compute A^2 and A^3 .

$$A^2 =$$

$$A^3 =$$

Math 1502, October 17th 2007

4. Let
$$\mathbf{x} = \begin{bmatrix} 1\\ 2\\ 0\\ 2 \end{bmatrix}$$
 and let $\mathbf{y} = \begin{bmatrix} 1\\ -1\\ 1\\ -1 \end{bmatrix}$.

(a) Compute the lengths $|\mathbf{x}|$, $|\mathbf{y}|$ of those vectors.

$$|\mathbf{x}| =$$

$$|\mathbf{y}| =$$

(b) Compute the dot product $\mathbf{x}\cdot\mathbf{y}$ and the angle θ of those vectors

$$\mathbf{x} \cdot \mathbf{y} =$$

Angle
$$\theta =$$

5. Find a one-to-one parametrization of the line 7x + 5y = 3

$$\left[\begin{array}{c} x\\y\end{array}\right] \ =$$

6. Find an equation of the plane in \mathbb{R}^3 containing the three points $\mathbf{p}_0 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\mathbf{p}_1 = \begin{bmatrix} 3\\0\\0 \end{bmatrix}$ and $\mathbf{p}_2 = \begin{bmatrix} 2\\0\\1 \end{bmatrix}$,

equation :

7. Draw the image by the matrix $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ of the unit square, in \mathbb{R}^2 , based on the vectors $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

8. Give the augmented matrix describing the following system of linear equations

$$x_{1} - 2x_{2} + x_{3} - 4x_{4} = 1$$

-x_{1} - x_{2} - 5x_{3} + 2x_{4} = -1
$$3x_{2} + x_{3} - 4x_{4} = 2$$

$$x_{1} + x_{2} + x_{3} = x_{4} = 0$$

$$[A|b] =$$

9. Using row operations, reduce the following matrix to an upper triangular one

$$A = \begin{bmatrix} 1 & -1 & 3 & 0 \\ 2 & 1 & -3 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$