Georgia Tech

School of Mathematics Math 1502

CALCULUS II Quiz # 8 October 24th 2007

1. Give a parametrization of the line passing through the vectors $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ in \mathbb{R}^3 .

2. What is the **rank** of a system of 4 linear equations with 6 variables that can be written in the following augmented matrix reduced form?

•	*	*	*	*	*	*
0	0	•	*	*	*	*
0	0	0	0	•	*	*
						*

(Here \bullet corresponds to a nonzero number, while * can be any number, zero or not)

Rank =

3. How many parameters are needed to express the solutions of the system of 4 linear equations with 6 variables that can be written in the following augmented matrix reduced form?

$$\begin{bmatrix} 1 & 5 & 6 & -1 & -3 & -1 & | & 0 \\ 0 & 0 & 1 & 0 & 2 & -2 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & -3 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

parameters =

4. Use the Gauss elimination method to solve

$$x + y + z + u = 1$$
, $2x + y - z + u = 2$,
 $-x + y + z - 3u = -9$, $-2x + y + z - 2u = 1$.

$$x = y = z = u =$$

5. Using the augmented matrix technique and Gauss elimination method, compute the inverse of the matrix

$$A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

