Calculus II
Quiz \# 8
October 24th 2007

First Name : \qquad
Last Name : \qquad
Section \& TA's name : \qquad

1. Give a parametrization of the line passing through the vectors $\mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ in \mathbb{R}^{3}.
2. What is the rank of a system of 4 linear equations with 6 variables that can be written in the following augmented matrix reduced form?

$$
\left[\begin{array}{llllll|l}
\bullet & * & * & * & * & * & * \\
0 & 0 & \bullet & * & * & * & * \\
0 & 0 & 0 & 0 & \bullet & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & *
\end{array}\right]
$$

(Here - corresponds to a nonzero number, while $*$ can be any number, zero or not)

$$
\text { Rank }=
$$

3. How many parameters are needed to express the solutions of the system of 4 linear equations with 6 variables that can be written in the following augmented matrix reduced form?

$$
\left[\begin{array}{cccccc:c}
1 & 5 & 6 & -1 & -3 & -1 & 0 \\
0 & 0 & 1 & 0 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

\# parameters =
4. Use the Gauss elimination method to solve

$$
\begin{array}{cc}
x+y+z+u=1, & 2 x+y-z+u=2 \\
-x+y+z-3 u=-9, & -2 x+y+z-2 u=1
\end{array}
$$

$$
x=\quad y=\quad z=\quad u=
$$

5. Using the augmented matrix technique and Gauss elimination method, compute the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

