Calculus II, Section K Quiz \# 10
November 12th 2008
20 minutes

First Name : \qquad
Last Name : \qquad

1. Let $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 0 & 3 & 2 \\ 1 & -1 & 1\end{array}\right]$.
(a) Give a basis for $\operatorname{Im}(A)$
(Give results here and use the back pages for your calculations)
(b) Give a basis for $\operatorname{Ker}(A)$
(Give results here and use the back pages for your calculations)
2. Let S be the set of $\mathbf{x} \in \mathbb{R}^{4}$ such that $x_{1}+2 x_{2}-3 x_{3}-x_{4}=0$.
(a) Show that S is a linear space
(b) Give the dimension of S
(Give results here and use the back pages for your calculations)
$\operatorname{dim}(S)=$
3. Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ an $\mathbf{v}_{2}=\left[\begin{array}{r}0 \\ -1 \\ 1 \\ -1\end{array}\right]$. Compute the coordinates of the vector \mathbf{w} in the linear space spanned by $\mathbf{v}_{1}, \mathbf{v}_{2}$ such that $\mathbf{w} \cdot \mathbf{v}_{1}=1$ and $\mathbf{w} \cdot \mathbf{v}_{2}=-1$.
Hint : use the matrix $A=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$ to express \mathbf{w}, compute $A^{t} \mathbf{w}$ then answer the question.
(Give results here and use the back pages for your calculations)
$\mathbf{W}=$

Use the bottom of this page and the back pages for your calculations

Use this page for your calculations

