Calculus II, SEction D
Quiz \# 6
October 7, 2009

First Name :
Last Name : \qquad

1. Let $A=\left[\begin{array}{cc}\sqrt{2} & -2 \\ 1 & -\sqrt{2}\end{array}\right]$. Compute A^{2}

$$
A^{2}=
$$

2. Let $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ and let $B=\left[\begin{array}{ccc}1 & u & v \\ 0 & 1 & w \\ 0 & 0 & 1\end{array}\right]$ where u, v, w are real numbers.
(a) Compute $A B$.
$A B=$
(b) By choosing u, v, w conveniently compute the inverse of A

$$
A^{-1}=
$$

3. Let A be a 3×3 matrix with column representation $A=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$. Find an explicit numerical 3×3 matrix B such that

$$
A B=\left[\mathbf{v}_{2}+\mathbf{v}_{3}, \mathbf{v}_{1}+\mathbf{v}_{3}, \mathbf{v}_{1}+\mathbf{v}_{2}\right]
$$

4. Compute the angle θ between $\mathbf{x}=\left[\begin{array}{c}\sqrt{3} \\ 1\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{c}\sqrt{3}-1 \\ \sqrt{3}+1\end{array}\right]$. Hint : compute the lengths of each vector, their dot product and $\cos \theta$. Warning : give θ as a result!
$\theta=$

