Calculus II, Section D
Quiz \# 7
October 14, 2009

First Name :
Last Name :

1. Let $A=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$. Let B be another 4×4 matrix. Which columns of B can be changed without changing the product $B A$.
2. Let $\mathbf{u}=\left[\begin{array}{c}-4 / 5 \\ 3 / 5\end{array}\right]$ and let $\mathbf{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Compute the vectors $\mathbf{x}_{\|}$and \mathbf{x}_{\perp}

$$
\mathbf{x}_{\|}=
$$

$$
\mathbf{x}_{\perp}=
$$

3. Let \mathbf{v} be the vector in \mathbb{R}^{n} with components $\left(1, a, a^{2}, \cdots, a^{n-1}\right)$. Compute its length as a function of a
(Hint : compute the square of the length first! Then use the geometric sum)

$$
|\mathbf{v}|=
$$

4. Let A be a $p \times m$ matrix and let B be a $m \times n$ matrix. Is it true that, if the columns of B are all the same, then the columns of $A B$ are all the same? Explain your reply.

TRUE

FALSE
5. Let $A=\left[\begin{array}{ccc}0 & \sqrt{3} / 3 & \sqrt{6} / 3 \\ \sqrt{2} / 2 & \sqrt{3} / 3 & -\sqrt{6} / 6 \\ -\sqrt{2} / 2 & \sqrt{3} / 3 & -\sqrt{6} / 6\end{array}\right]$. Is it an isometry? Why ?

$$
\begin{array}{llll}
Y E S & \square & \text { NO } \quad \square
\end{array}
$$

