Calculus II, Section D
Quiz \# 5
September 30, 2009

First Name : \qquad
Last Name : \qquad

1. Let f, g be the two transformations below. For each of them indicate whether it is linear (YES) or not (NO).

$$
\begin{aligned}
& f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
3 x-5 y \\
-4 x-2 y+1
\end{array}\right], \\
& g\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x+y \\
y^{3} x^{2}
\end{array}\right] . \\
& Y E S \square \quad N O \square \\
& \text { YES } \square \\
& N O \square
\end{aligned}
$$

2. Let $f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x^{2}-y^{2} \\ 2 x y\end{array}\right]$. Is this map one-to-one? Justify your answer.
3. Let $A=\left[\begin{array}{cccc}0 & -1 & -1 & -3 \\ 1 & 0 & -4 & 2 \\ 5 & -6 & 3 & 0 \\ 6 & 1 & 0 & -1\end{array}\right]$ and let $\mathbf{x}=\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]$. Compute the third entry of $A \mathbf{x}$ without computing the whole vector $A \mathrm{x}$.

$$
\text { Result }=
$$

4. Compute the inverse of the 2×2 matrix $A=\left[\begin{array}{cc}5 & -\sqrt{3} \\ \sqrt{12} & 1\end{array}\right]$.

5. Let f be the linear transformation from \mathbb{R}^{3} into \mathbb{R}^{2} given first by a rotation of 45° around the x-axis (anti-clockwise in the plane $y z$), followed by a rotation of 45° around the z-axis (anti-clockwise in the plane $x y$) and by the projection parallel to the z-axis onto the plane $z=0$. Compute the matrix A_{f} of this transformation:
Hint : compute the images of the vectors of the canonical basis

