Calculus II, SECtion D
 Quiz \# 12
 December 1st, 2010

First Name : \qquad
Last Name : \qquad

All along this quiz A will denote the 4×4 matrix $A=\left[\begin{array}{cccc}\lambda & 1 & 0 & 0 \\ 1 & \lambda & 1 & 0 \\ 0 & 1 & \lambda & 1 \\ 0 & 0 & 1 & \lambda\end{array}\right]$.

1. (4 pts) Compute the determinant of A as a function of λ

$$
\operatorname{det}(A)=
$$

(Use this page for your calculations)
2. (2 pts) Give the values of λ for which A is NOT invertible. (Hint : the formula $((\sqrt{5} \pm 1) / 2)^{2}=(3 \pm \sqrt{5}) / 2$ can be used)
$\lambda=$
3. (2 pts) If D is a diagonal 4×4 matrix with diagonal elements (a, b, c, d) compute $D A D^{-1}$.
$D A D^{-1}=$
4. (2 pts) Let $B=\left[\begin{array}{cccc}\lambda & 1 / 2 & 0 & 0 \\ 2 & \lambda & 2 / 3 & 0 \\ 0 & 3 / 2 & \lambda & 3 / 4 \\ 0 & 0 & 4 / 3 & \lambda\end{array}\right]$. Compute $\operatorname{det}(B)$ in terms of $\operatorname{det}(A)$. (Hint : use the previous question)

