Georgia Tech

SCHOOL OF MATHEMATICS

MATH 1502

Calculus II, Section D Quiz # 10 November 17 2010

First Name	:
Last Name :	

1. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4 \\ 2 \\ 7 \end{bmatrix}$. What is the dimension of the subspace S they span in \mathbb{R}^3 ?

$$\dim(S) =$$

(Use this page for your calculations)

2.	Let A be	an $m \times n$	<i>n</i> matrix	with $n <$	m.	Let A	has	linearly	indepe	endent
	columns.	Are the	following	g matrice	es in	vertibl	le?			

 A^tA YES \square NO \square

 AA^t YES \square NO \square

Why?

3. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. If $\mathbf{b} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$, find real numbers $\lambda_1, \lambda_2, \lambda_3$ such that $\mathbf{b} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3$.

$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

(Use this page for your calculations)

4. Let A a 3×3 matrix such that the equation $A^t \mathbf{x} = 0$ only when \mathbf{x} is a multiple of $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. Let then $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$. Does $A\mathbf{x} = \mathbf{b}$ has a solution? If yes is it unique?

 $A\mathbf{x} = \mathbf{b} \ has \ a \ solution$ YES \square NO \square

The solution is unique YES \square NO \square

5. Find the orthogonal projection onto the subspace
$$S \subset \mathbb{R}^3$$
 spanned by the vectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

$$P_S =$$

(Use this page for your calculations)