Calculus II, Section K Quiz \# 10
 November 172010

First Name :
Last Name : \qquad

1. Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. What is the dimension of the subspace S they span in \mathbb{R}^{3} ?

$$
\operatorname{dim}(S)=
$$

(Use this page for your calculations)
2. Let A be an $p \times q$ matrix with $p<q$. Let A has linearly independent rows. Are the following matrices invertible?
$A^{t} A$
$A A^{t}$
$Y E S \square$

Why?
3. Let $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}3 \\ 2 \\ 2\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$. If $\mathbf{b}=\left[\begin{array}{r}2 \\ 2 \\ -2\end{array}\right]$, find real numbers $\lambda_{1}, \lambda_{2}, \lambda_{3}$ such that $\mathbf{b}=\lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}+\lambda_{3} \mathbf{v}_{3}$.

$$
\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right]=[\square
$$

(Use this page for your calculations)
4. Let A a 3×3 matrix such that the equation $A^{t} \mathbf{x}=0$ only when \mathbf{x} is a multiple of $\mathbf{v}=\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$. Let then $\mathbf{b}=\left[\begin{array}{c}\sqrt{3} \\ \sqrt{3} \\ \sqrt{3}\end{array}\right]$. Does $A \mathbf{x}=\mathbf{b}$ has a solution? If yes is it unique?

Ax = b has a solution \quad YES $\square \quad$ NO \square

The solution is unique
YES \square
NO \square
5. Find the orthogonal projection onto the subspace $S \subset \mathbb{R}^{3}$ spanned by the vectors $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.

(Use this page for your calculations)

