Georgia Tech

School of Mathematics Math 1502

CALCULUS II, SECTION K Quiz # 10 November 17 2010

First Name : _____

Last Name : _____

1. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. What is the dimension of the subspace S they span in \mathbb{R}^3 ?

$$\dim(S) =$$

(Use this page for your calculations)

2. Let A be an $p \times q$ matrix with p < q. Let A has linearly independent rows. Are the following matrices invertible?

Why?

3. Let
$$\mathbf{v}_1 = \begin{bmatrix} 2\\1\\0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 3\\2\\2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$. If $\mathbf{b} = \begin{bmatrix} 2\\2\\-2 \end{bmatrix}$, find real numbers $\lambda_1, \lambda_2, \lambda_3$ such that $\mathbf{b} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3$.

$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} & & \\ & & \end{bmatrix}$$

(Use this page for your calculations)

4. Let $A = 3 \times 3$ matrix such that the equation $A^{t}\mathbf{x} = 0$ only when \mathbf{x} is a multiple of $\mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$. Let then $\mathbf{b} = \begin{bmatrix} \sqrt{3} \\ \sqrt{3} \\ \sqrt{3} \end{bmatrix}$. Does $A\mathbf{x} = \mathbf{b}$ has a solution? If yes is it unique?

$$A\mathbf{x} = \mathbf{b}$$
 has a solution YES \square NO \square
The solution is unique YES \square NO \square

5. Find the orthogonal projection onto the subspace $S \subset \mathbb{R}^3$ spanned by

the vectors
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

$$P_S =$$

(Use this page for your calculations)