Calculus II, Section D

Test \# 1
September 22nd, 2010
First Name : \qquad
Last Name : \qquad

DO NOT WRITE IN THE TABLE BELOW

1 a	
1 b	
2 a	
2 b	
2 c	
2 d	
3	
4 a	
4 b	
4 c	
5 a	
5 a	
6 b	

WARNING :

Read carefully, read the comments in italic, take your time, do not panic and double check what you write.

Take the time to write in plain English the criteria or the names of the tests you are using to justify your answer.

The test will last 50 minutes.

1. (a) Give the Taylor expansion of $P(x)=27-27 x+9 x^{2}-x^{3}$ near $x=3$
$P(x)=$
(b) Give the value of $Q^{(19)}(0)$ if

$$
\begin{aligned}
& Q(x)=1-\frac{x^{13}}{39}+\frac{x^{19}}{17 \times 18 \times 19}-\frac{x^{39}}{37 \times 38 \times 39}+\frac{x^{52}}{437}-\frac{x^{65}}{65 \times 64 \times 63} \\
& Q^{(19)}(0)=
\end{aligned}
$$

2. The hyperbolic cosine and sine are defined by $\cosh x=\frac{e^{x}+e^{-x}}{2}$ and $\sinh x=\frac{e^{x}-e^{-x}}{2}$.
(a) Compute the first and the second derivative of $\cosh x$

$$
\begin{aligned}
\frac{d \cosh x}{d x} & = \\
\frac{d^{2} \cosh x}{d x^{2}} & =
\end{aligned}
$$

(b) Give the Taylor expansion to order $2 n+1$, near $x=0$ of $\cosh x$ Hint : compute first $\cosh 0$ and $\sinh 0$

$$
\cosh x=
$$

(c) Give the expression $R_{2 n+1}$ of the remainder (Taylor form) and show that $0 \leq R_{2 n+1} \leq(\cosh x) x^{2 n+2} /(2 n+2)$!
(Hint : remark that $\cosh x$ is positive, increasing in x for $x>0$ and that $\cosh -x=\cosh x$)
Put the result here and use the back page for your calculations

$$
R_{2 n+1}(x)=
$$

(d) Compute the numerical value of cosh 1 by using $n=2$: using the previous bound on the remainder gives an interval of values to which the exact value belongs.
(Hint : $37 /(24 \times 719) \leq 2.2 \times 10^{-3}$.) Put the result here and use the back page for your calculations

$$
\leq \cosh 1 \leq
$$

(Use this page for your calculations)

3. Is the following integral convergent?

(Hint : identify the points on the interval of integration where the integral is improper ; it will be admitted that $x^{6}-x^{3}+1 \geq 3 / 4$)

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{7}-x^{4}+x\right)^{3 / 14}}
$$

4. Tell whether the following series converge or not and indicate the tests used to conclude
(a)

$$
\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{n}{1+n}\right)^{31}
$$

Converges \quad Diverges

Test used :

(b)

$$
\sum_{n=0}^{\infty} \frac{167^{n}}{(n!)^{0.01}}
$$

Test used :

(c)

$$
\sum_{n=0}^{\infty} \frac{\{\ln (n+2)\}^{153}}{\left(1+2 n^{3}\right)^{1 / 2}}
$$

Converges

Tests used :

(d)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{5 n^{2}-1}}
$$

Converges absolutely:
Converges \square
YES \square
NO \square

Tests used :

5 . Let $f(x)$ be the function given by the power series

$$
f(x)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{\left(1+5 n+n^{2}\right)}
$$

(a) Compute the radius of convergence and indicate the test you are using.

Domain of convergence $=$

Arguments and Tests used:
(b) What may happen at the end points?

End points :
(Use this page for your calculations)
6. This question concerns the convergence of the following series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n^{2}}{1+2^{3}+3^{3}+\cdots+n^{3}} \tag{1}
\end{equation*}
$$

(a) Using a comparison with the function $f(x)=x^{3}$, show that $1+$ $2^{3}+3^{3}+\cdots+n^{3} \geq \int_{0}^{n} x^{3} d x$
(b) Using the previous estimate, is the series (1) above converging or diverging? Give the criterion used in to justify your answer.
(Use this page for your calculations)

