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1. Answer :

lim
n→∞

(1 +
1

n
)n = e = 2.718 · · ·

Indeed, taking the log of the l.h.s. gives n ln (1 + 1/n) = n(1/n + O(1n2)) → 1 as n → ∞.

lim
x→0

e−1/x =

{

0 if x → 0+

+∞ if x → 0−

}

lim
x→0

cos (1/x + π/3) = undefined

Indeed, as x → 0 1/x → ∞ so that the cos oscillates between −1 and +1 indefinitely.

2. Answer :

1

1 − x2
= 1 + x2 + x4 + · · · + x2m +

x2m+2

1 − x2

The proof comes from setting x2 = y and from

1

1 − y
= 1 +

y

1 − y
(1)

Replacing the 1/(1 − y) by eq. (1) in the r.h.s. of eq. (1) gives

1

1 − y
= 1 + y +

y2

1 − y
= 1 + y + y2 +

y3

1 − y
= · · · = 1 + y + · · · +

ym+1

1 − y

3. Answer :

1

(1 − x)1/3
= 1 +

x

3
+

1 · 4

32 · 2
x2 + · · · +

1 · 4 · 7 · · · (3n − 2)

3nn!
xn + · · ·

The Taylor series of (1 + x)α is given by

(1 + x)α = 1 + αx + α(α − 1)
x2

2
+ · · · + α(α − 1)(α − n + 1)

xn

n!
+ · · ·

If x is replaced by −x and α by −1/3 this gives the answer (Note : all signs cancel out)
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4. Are the following series convergent or not ?

∞
∑

n=0

xn

n!
(x ∈ R) YES by ratio test

∞
∑

n=0

(.9999)n YES by ratio test, since .9999 < 1

∞
∑

n=2

1

n lnn
NO by integral test

The integral
R A

2
dx/x ln x can be computed by setting u = ln x. It becomes

R ln A

ln 2
du/u = ln ln A − ln ln 2

which diverges as A → ∞

∞
∑

n=2

1

n ln2 n
YES by integral test

The integral
R A

2
dx/x ln2 x can also be computed by setting u = ln x. It becomes

R ln A

ln 2
du/u2 = 1/ ln 2−1/ ln A

which converges as A → ∞

∞
∑

n=2

1

(ln2 n)n
YES by comparison or by ratio test

Here two types of arguments can be used :

(i) by comparison : for n large enough, ln n ≥ 2 so that the series is bounded from above by 1/2n which is
a convergent harmonic series ;

(ii) by ratio test :

xn+1

xn
=

(ln n)2n

(ln (n + 1))2n+2
=

„

ln n

ln (n + 1)

«2n
1

ln2 (n + 1)
= O(1)

1

ln2 (n + 1)
→ 0

This is because ln (n + 1) = ln n + ln (1 + 1/n) = ln n + 1/n + O(1/n2) so that

ln n

ln (n + 1)
=

1

1 + O(1/(n ln n))
⇒

„

lnn

ln (n + 1)

«2n

= e−2nO(1/(n ln n)) = O(1)

∞
∑

n=3

(−1)n 1

ln lnn
YES by Leibniz theorem

The sequence 1/nln n is decreasing, converges to zero, so that the alternate series converges simply.
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5. The Euler constant :

(a) For n < x < n + 1 then 1/(n + 1) < 1/x < 1/n. Therefore

1

n + 1
<

∫ n+1

n

dx

x
= ln (n + 1) − lnn <

1

n

(b) The previous inequality gives (using ln 1 = 0)

ln (n + 1) = (ln (n + 1) − lnn) + (lnn − ln (n − 1)) + · · · + (ln 2 − ln 1)

<
1

n
+

1

n − 1
+ · · · +

1

2
+ 1

Thus ξn = 1 + 1/2 + · · · + 1/n − ln (n + 1) > 0.

(c) From the definition of ξn it follows that ξn − ξn−1 = 1/n + lnn − ln (n + 1). Using
(5a) above this gives

0 < ξn − ξn−1 <
1

n
−

1

n + 1

(d) It follows that for m > n

ξm − ξn = (ξm − ξm−1) + (ξm−1 − ξm−2) + · · · + (ξn+1 − ξn)

Hence, thanks to (5c), ξm − ξn > 0 and

ξm − ξn = (ξm − ξm−1) + (ξm−1 − ξm−2) + · · · + (ξn+1 − ξn)

<

(

1

m
−

1

m + 1

)

+

(

1

m − 1
−

1

m

)

+ · · · +

(

1

n + 1
−

1

n + 2

)

=
1

n + 1
−

1

m + 1
<

1

n + 1

(e) The inequality obtained in (5d) shows that (ξn)n>0 is an increasing sequence such
that (use (5d) with n = 1)

0 < ξ1 < ξn < ξ1 +
1

2

Hence the sequence is bounded and thus converges. Another argument is that, since
limn→∞ 1/(n + 1) = 0, (ξn)n>0 is a Cauchy sequence, and thus converges to C ∈ R.
Since ξ1 = 1− ln 2 = 0.307 · · · it follows that 1/2+ ξ1 = 0.807 · · · < 1 so that the limit
C = limn→∞ ξn exists and satisfies 0 < 0.307· ≤ C ≤ 0.807· < 1.

C is called the Euler constant and C = 0.577215665 · · ·.

See http://mathworld.wolfram.com/Euler-MascheroniConstant.html for more informations.
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6. Using the Gauss method find the inverse of the matrix

A =









1 1 0 0
−1 1 1 0
0 −1 1 1
0 0 −1 1









Answer :

A−1 =
1

5









3 −2 1 −2
2 2 −1 2
1 1 2 −2
1 1 2 3









Proof : To find the inverse of A, it is sufficient to solve the system of linear equations AB = I, with
solution (if it exists) B = A−1, and which can be written as

ai1b1j + ai2b2j + ai3b3j + ai4b4j = δij ∀i, j ∈ {1, · · · , n} (2)

In the previous expression aij stands for the (i, j)-cœfficient of A and δij is the Kronecker symbol defined
by δii = 1 and δij = 0 when i 6= j. This gives 16 equations with 16 unknown given by the matrix elements
((bij)) of B. To compute this inverse it is convenient to organize the computation as follows :

– write A and the r.h.s. of 2 in a 4 × 8 rectangular matrix as

2

6

6

4

1 1 0 0 1 0 0 0
−1 1 1 0 0 1 0 0
0 −1 1 1 0 0 1 0
0 0 −1 1 0 0 0 1

3

7

7

5

– then by adding the right multiple of the first row to each row below, cancel out the coefficients of the first
column below the first row. Since only the second row has a nonzero cœfficient on the first column, only
one such operation is necessary. This amounts to add row #1 to #2 and to normalize

2

6

6

4

1 1 0 0 1 0 0 0
0 2 1 0 1 1 0 0
0 −1 1 1 0 0 1 0
0 0 −1 1 0 0 0 1

3

7

7

5

, ⇒

2

6

6

4

1 1 0 0 1 0 0 0
0 1 1

2
0 1

2
1
2

0 0
0 −1 1 1 0 0 1 0
0 0 −1 1 0 0 0 1

3

7

7

5

– Next, keep canceling out the terms below the main diagonal of the l.h.s.. In our case its amounts to add
row #2 to #3 and to normalize again :

2

6

6

4

1 1 0 0 1 0 0 0
0 1 1

2
0 1

2
1
2

0 0
0 0 3

2
1 1

2
1
2

1 0
0 0 −1 1 0 0 0 1

3

7

7

5

, ⇒

2

6

6

4

1 1 0 0 1 0 0 0
0 1 1

2
0 1

2
1
2

0 0
0 0 1 2

3
1
3

1
3

2
3

0
0 0 −1 1 0 0 0 1

3

7

7

5

– Proceeds in the same way with rows #3 and #4

2

6

6

4

1 1 0 0 1 0 0 0
0 1 1

2
0 1

2
1
2

0 0
0 0 1 2

3
1
3

1
3

2
3

0
0 0 0 5

3
1
3

1
3

2
3

1

3

7

7

5

, ⇒

2

6

6

4

1 1 0 0 1 0 0 0
0 1 1

2
0 1

2
1
2

0 0
0 0 1 2

3
1
3

1
3

2
3

0
0 0 0 1 1

5
1
5

2
5

3
5

3

7

7

5

– Next proceed upward to cancel out row by row the nondiagonal elements of the l.h.s.. This amounts to
subtract 2/3×row#4 from row#3 (no normalization is needed anymore) then to subtract 1/2×row#3
from row#2
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2

6

6

4

1 1 0 0 1 0 0 0
0 1 1

2
0 1

2
1
2

0 0
0 0 1 0 1

5
1
5

2
5

− 2
5

0 0 0 1 1
5

1
5

2
5

3
5

3

7

7

5

, →

2

6

6

4

1 1 0 0 1 0 0 0
0 1 0 0 2

5
2
5

− 1
5

2
5

0 0 1 0 1
5

1
5

2
5

− 2
5

0 0 0 1 1
5

1
5

2
5

3
5

3

7

7

5

– At last, subtracting row#2 from row#1 gives

2

6

6

4

1 0 0 0 3
5

− 2
5

1
5

− 2
5

0 1 0 0 2
5

2
5

− 1
5

2
5

0 0 1 0 1
5

1
5

2
5

− 2
5

0 0 0 1 1
5

1
5

2
5

3
5

3

7

7

5

, ⇒ A−1 =
1

5

2

6

6

4

3 −2 1 −2
2 2 −1 2
1 1 2 −2
1 1 2 3

3

7

7

5

namely A−1 can be read on the r.h.s. of the rectangular matrix. To make sure no mistake were made
during the Gauss process, it is careful to check this answer namely

AA−1 =

2

6

6

4

1 1 0 0
−1 1 1 0
0 −1 1 1
0 0 −1 1

3

7

7

5

×
1

5

2

6

6

4

3 −2 1 −2
2 2 −1 2
1 1 2 −2
1 1 2 3

3

7

7

5

= I

7. Given a system of 106 equations with 108 variables how many solution can one expect ?

Answer : either no solution or an infinite number.

8. What are the kernel and the image of the linear map T : R
3 7→ R

3 defined by T (x, y, z) =
(2x + y + z, x + 2y + z, 3x + 3y + 2z) ? Compute their dimensions.

Answer :

Ker T = {X ∈ R
3 ; ∃a ∈ R , X = a(1, 1,−3)} = Span{(1, 1,−3)} dimKer T = 1

Im T = {Y = (x′, y′, z′) ∈ R
3 ; x′ + y′ = z′} dim Im T = 2

Remark : the vector (1, 1,−3) can be replaced by any nonzero multiple in the first equality.

Proof : By definition Ker T is the set of vectors X = (x, y, z) ∈ R
3 such that T (X) = 0. To get such X’s

it is necessary and sufficient to solve the linear system

2x + y + z = 0 x + 2y + z = 0 3x + 3y + 2z = 0

The solutions are of the form x = y = −z/3. Therefore X = a(1, 1,−3) for a ∈ R, namely

Ker T = {X ∈ R
3 ; ∃a ∈ R , X = a(1, 1,−3)} = Span{(1, 1,−3)}

In the previous equality, the vector (1, 1,−3) can be replaced by any nonzero multiple , such as (1/3, 1/3,−1).

Consequently {(1, 1,−3)} is a basis of Ker T and thus

dim Ker T = 1

The image of T is the set of vectors Y of the form Y = T (X) for some X ∈ R
3. Since Ker T 6= {0} this

image is not the full space because

dim Ker T + dim Im T = dim R
3 = 3 ⇒ dim Im T = 2

Setting Y = (x′, y′, z′) = T (x, y, z) leads to

x′ = 2x + y + z , y′ = x + 2y + z z′ = 3x + 3y + 2z
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implying that x′ + y′ = z′. Conversely, if x′ + y′ = z′, then some (x, y, z) ∈ R
3 can be found (it might not

be unique ! !) such that x′ = 2x+ y + z, y′ = x+2y + z, z′ = 3x+3y +2z. For indeed a Gauss process leads
to the following solution x = (2x′ − y′)/3, y = (2y′ − x′)/3 and z = 0. This argument shows that

Im T = {Y = (x′, y′, z′) ∈ R
3 ; x′ + y′ = z′} (3)

A basis of Im T can be constructed by choosing, for instance, x = 1, y = 0 or x = 0, y = 1, namely

Y1 = (1, 0, 1) Y2 = (0, 1, 1)

It is simple to check that both vectors are in Im T (see 3) . Moreover they are linearly independent because
if 0 = b1Y1 + b2Y2 then b1Y1 + b2Y2 = (b1, b2, b1 + b2) = 0 implying b1 = 0 = b2. At last, any element of
Im T can be written as a linear combination of Y1 and Y2 because Y ∈ Im T ⇔ Y = (x′, y′, x′ + y′) for
some real numbers x′, y′so that Y = x′Y1 + y′Y2. Since the basis {Y1, Y2} of Im T has two vectors

dim Im T = 2

9. For any three scalars a, b, c let A =





1 a b
0 1 c
0 0 1



. For any three scalars u, v, w let B =





1 u v
0 1 w
0 0 1



.

(a) Compute AB

AB =





1 a b
0 1 c
0 0 1



 ×





1 u v
0 1 w
0 0 1



 =





1 a + u b + v + aw
0 1 c + w
0 0 1



 (4)

(b) Conclude that A is invertible and compute its inverse.
For indeed, looking at (4) shows that AB = I admits a solution namely

a + u = 0, c + w = 0, b + v + aw = 0, ⇔ u = −a, w = −c, v − ac − b

Since AB = I is equivalent to B = A−1 this gives

A−1 =





1 −a ac − b
0 1 −c
0 0 1





10. Let V be the space spanned by the monomials {X 2, X5, X8} and let W be the space
spanned by the monomials {X,X5, X9}. What are the space V ∩ W and V + W ?

Answer :

V ∩ W = Span{X5} V + W = Span{X,X2, X5, X8, X9}

Remark : In this question it is implicitly assumed that V, W are vector spaces over K = R or C.
Consequently they are both subspaces of the space K[X] of polynomials with respect to the variable X.

See http://www.purplemath.com/modules/polydefs.htm for a definition of polynomials.

See http://www.edhelper.com/polynomials.htm for exercises on polynomials.
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Proof : The elements of V are polynomials of the form

p ∈ V ⇔ p(X) = p2X
2 + p5X

5 + p8X
8 where p2, p5, p8 ∈ K

Similarly the elements of W are of the form

q ∈ W ⇔ q(X) = q1X + q5X
5 + q9X

9 where q1, q5, q9 ∈ K

Therefore a polynomial belonging to the intersection V ∩ W must have both forms simultaneously, which
is only possible if the terms of degree not equal to 5 vanish. Thus r ∈ V ∩ W ⇔ r(X) = r5X

5 for some
r5 ∈ K, namely V ∩ W is spanned by the monomial X5.

In much the same way, elements of V + W are polynomials s ∈ K[X] that can be written as a sum of a
polynomial p ∈ V and of a polynomial q ∈ W . Thus s is a polynomial of the form

s ∈ V + W ⇔ s(X) = s1X + s2X
2 + s5X

5 + s8X
8 + s9X

9 where s1, s2, s5, s8s9 ∈ K

In other words V + W is spanned by the monomials {X, X2, X5, X8, X9}.

11. Let R[X] be the real vector space of polynomials in X with real cœfficients. Let T : R[X] 7→
R[X] be the linear operator defined by T (p) = Xp′−7p where p′ denote the first derivative
of p ∈ R[X].

(a) Compute T (Xn) for all n ∈ N

(b) Compute the kernel of T .

(c) Compute the image of T .

Answer :

T (Xn) = (n − 7)Xn Ker T = Span{X7}

Im T = {q ∈ R[X] ; q(X) =
∑

k≥0

qkX
k , q7 = 0}

Proof :

(a) T (Xn) = XdXn/dX − 7Xn = (n − 7)Xn for all n ∈ N.

(b) By definition, the kernel of T is the set of polynomials p ∈ R[X] solutions of the equation T (p) = 0.
Writing p as

p(X) = p0 + p1X + p2X
2 + · · · + pnXn + · · · + pNXN

where N is its degree and p0, p1, · · · , pN are its cœfficients (namely real numbers here), leads to

T (p) = p0T (1) + p1T (X) + p2T (X2) + · · · + pnT (Xn) + · · · + pNT (XN )

= −7p0 − 6p1X − 5p2X
2 + · · · (n − 7)pnXn + · · · + (N − 7)pNXN (5)

Consequently p ∈ Ker T if and only if the r.h.s of the last equation vanishes identically, namely if
and only if (n − 7)pn = 0 for all n’s. If n 6= 7 this implies pn = 0, whereas for n = 7 the terms
(7 − 7)p7 = 0 whatever the value of p7. Hence p ∈ Ker T if and only p = p7X

7. This means that
Ker T is exactly the subspace spanned by X7.

(c) By definition, a polynomial q belongs to the image of T if and only if it can be written as q = T (p)
for some polynomial p ∈ R[X]. Thanks to eq. (5) such a p exists if and only if it satisfies the equation
(n − 7)pn = qn. Thus, if n 6= 7 this gives pn = qn/(n − 7) while if n = 7 there is a solution if and
only if q7 = 0. Hence Im T is exactly the set of polynomials with real cœfficients with cœfficient of
degree 7 vanishing.
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12. Problem : Let a, b, c, d, e be scalars in K = R or C. The goal of this problem is to compute
the determinant of the matrix

detA5 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1 1
a b c d e
a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= G(a, b, c, d, e)

It will be convenient to use the following vectors

X(a) =













1
a
a2

a3

a4













Let D(X1, X2, X3, X4, X5) be the 5-linear K-valued totally antisymmetric map such that
D(E1, E2, E3, E4, E5) = 1 if {E1, E2, E3, E4, E5} denotes the canonical basis of K5.

(a) Show that G(a, b, c, d, e) = D (X(a), X(b), X(c), X(d), X(e)).

The determinant of a 5×5 matrix A is the scalar det A such that, for any family {X1, X2, X3, X4, X5}
of vectors in K5

D(AX1, AX2, AX3, AX4, AX5) = detA D(X1, X2, X3, X4, X5)

It is indeed a (remarkable) Theorem that this number DOES NOT depend upon the choice of the five
vectors {X1, X2, X3, X4, X5} nor does it depend upon the choice of D as long as D is 5-linear and
totally antisymmetric ! ! If D is normalized by the condition D(E1, E2, E3, E4, E5) = 1, it follows
from the previous formula that

D(AE1, AE2, AE3, AE4, AE5) = det A

The vector Xi = AEi is exactly the ith-column of the matrix A. Applied to A = A5 above this gives

A5E
1 = X(a) , A5E

2 = X(b) , A5E
3 = X(c) , A5E

4 = X(d) , A5E
5 = X(e) .

so that

G(a, b, c, d, e) = detA5 = D (X(a), X(b), X(c), X(d), X(e))

(b) Conclude then that G(a, b, c, d, e) is a polynomial in each of the (a, b, c, d, e) of degree
at most 4.

The multilinearity of D(X1, X2, X3, X4, X5) in each vector Xi shows that it can be decomposed
into a sum of terms, each of which being a product of the form ±c1c2c3c4c5D(E1, E2, E3, E4, E5) =
±c1c2c3c4c5 (by normalization) where ci is one of the coordinates of X i. Since X(a) have coordinates
given by powers of a of degree less than or equal to 4, it follows that c1c2c3c4c5 = ak1bk2ck3dk4ek5

where the ki’s are integers between 0 and 4. Hence, G is a polynomial with respect to each of the
5-variables a, b, c, d, e of degree at most 4.

(c) Conclude also that G(a, b, c, d, e) changes sign if two letters are exchanged.

Exchanging two letters in G(a, b, c, d, e) is equivalent to exchanging the corresponding columns of A5,
and therefore, due to the total antisymmetry of D, it results in a change of sign.
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(d) Conclude also that G(a, b, c, d, e) = 0 if two of the (a, b, c, d, e) are equal.

If two of the numbers a, b, c, d, e are equal, G(a, b, c, d, e) does not change by exchanging them, but
at the same time, by antisymmetry, it changes sign. Thus G(a, b, c, d, e) = −G(a, b, c, d, e) when that
happens, namely G(a, b, c, d, e) = 0.

(e) Show then that, if (b, c, d, e) are considered as parameters, the polynomial P (a) =
G(a, b, c, d, e) admits (b, c, d, e) as roots and thus P (a) = R(b−a)(c−a)(d−a)(e−a)
where R depends only on (b, c, d, e).

Thanks to the previous result (12b), P (a) is a polynomial of degree at most 4 in a, with cœfficients
depending polynomialy on b, c, d, e. Moreover (12d) shows that P (a) vanishes for a = b, c, d, e. The-
refore b, c, d, e are roots of a, so that P can be decomposed into prime factor as P (a) = R(b − a)(c −
a)(d − a)(e − a) where R is also a polynomial in a, b, c, d, e. But since P has degree at most 4 w.r.t.
a, and since (b− a)(c − a)(d− a)(e− a) is also a polynomial od degree 4 in a, it follows that R does
not depend on a.

(f) By using the same argument with (b, c, d, e) instead of a, conclude that

G(a, b, c, d, e) = g5(b− a)(c − a)(d − a)(e− a)(c− b)(d − b)(e − b)(d− c)(e − c)(e − d)
where g5 is some scalar.

Thanks to the previous result (12d), R is a polynomial of degree at most 4 in b, vanishing for b = c, d, e,
with cœfficients depending polynomialy on c, d, e. The same argument shows that R = S(c − b)(d −
b)(e − b) where S is a polynomial in b, c, d, e. Thus G(a, b, c, d, e) = S(c − b)(d − b)(e − b)(b − a)(c −
a)(d − a)(e − a). The product in the r.h.s. is already a polynomial of degree 4 in b, so that S cannot
depend on b either. Again due to (12d), S is a polynomial of degree at most 4 in c, which vanishes
for c = d, e Thus S = T (d − c)(e − c). Hence G(a, b, c, d, e) = T (d − c)(e − c)(c − b)(d − b)(e −
b)(b − a)(c − a)(d − a)(e − a). Again, since the product of the r.h.s. is a polynomial of degree 4 in c
also, T cannot depend on c. Hence T is a polynomial of degree at most 4 in each of d, e vanishing
when e = d so that T = U (e − d) where U is a polynomial of degree at most 4 in e, d. Hence again
G(a, b, c, d, e) = U (e − d)(d − c)(e − c)(c − b)(d− b)(e − b)(b − a)(c− a)(d − a)(e− a). But since the
product has degree 4 in all variables, U cannot depend on any of the five numbers a, b, c, d, e. Thus
g5 = U is a scalar.

(g) If a = 0, use Cramer’s rule to show that G(0, b, c, d, e) = bcde · detA4 where A4

is obtained from A5 by removing the last row and the first column. Conclude that
det A4 = g5(c − b)(d − b)(e − b)(d − c)(e − c)(e − d).

To compute the scalar g5 ∈ K, let a = 0. Then from the previous formula proved in (12f) it follows
that

G(0, b, c, d, e) = g5bcde · (e − d)(d − c)(e − c)(c − b)(d − b)(e − b)

On the other hand

G(0, b, c, d, e) =

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1 1 1 1 1
0 b c d e
0 b2 c2 d2 e2

0 b3 c3 d3 e3

0 b4 c4 d4 e4

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Cramer’s rule, applied to the first column, leads to

G(0, b, c, d, e) =

˛

˛

˛

˛

˛

˛

˛

˛

b c d e
b2 c2 d2 e2

b3 c3 d3 e3

b4 c4 d4 e4

˛

˛

˛

˛

˛

˛

˛

˛

= bcde

˛

˛

˛

˛

˛

˛

˛

˛

1 1 1 1
b c d e
b2 c2 d2 e2

b3 c3 d3 e3

˛

˛

˛

˛

˛

˛

˛

˛

= bcde detA4
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Hence

det A4 = g5 · (e − d)(d − c)(e − c)(c − b)(d − b)(e − b)

(h) Proceeding recursively, show that g5 = 1.

Let A3, A2 be defined by

A3 =

2

4

1 1 1
c d e
c2 d2 e2

3

5 A2 =

»

1 1
d e

–

(6)

The same argument as before applied to A4 instead of A5, then to A3 instead of A4, leads to

detA3 = g5 · (e − d)(d − c)(e − c) detA2 = g5 · (e − d)

But the formula (6) shows that detA2 = e − d so that g5 = 1.


