Honor Calculus II
Quiz \# 3

September 8th, 2004

First Name : \qquad
Last Name :

1. Is the following series converging (Indicate the reason)?

$$
\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{n}}
$$

2. For which value of $x>0$ is the following sequence convergent (Hint: use $\left.\lim _{n \rightarrow \infty}(1+1 / n)^{n}=e\right)$?

$$
\sum_{n=2}^{\infty} \frac{x^{n} n!}{n^{n}}
$$

3. Is the following series converging ? Is it absolutely converging? Why?

$$
\begin{array}{lll}
\frac{1}{\ln 2}-\frac{1}{\ln 3}+\frac{1}{\ln 4}+\cdots(-1)^{n-1} \frac{1}{\ln n}+\cdots & \\
\text { converging? } & \mathrm{YES} \square & \mathrm{NO} \square \\
\text { absolutely converging? } & \mathrm{YES} \square & \mathrm{NO} \square \\
\text { reasons for that : } & &
\end{array}
$$

4. Prove that if $\sum_{n=1}^{\infty} a_{n}^{2}$ and $\sum_{n=1}^{\infty} b_{n}^{2}$ converge then so does $\sum_{n=1}^{\infty} a_{n} b_{n}$ (Hint : use an inequality)
5. Compute the infinite product (Hint : use $n^{2}-1=(n-1)(n+1)$ and compute the partial products)

$$
\prod_{n=2}^{\pi}\left(1-\frac{1}{n^{n}}\right)
$$

