Georgia Tech

School of Mathematics Math 2401

CALCULUS III Test # 1 September 20th, 2012

First Name : _____

Last Name : _____

DO NOT WRITE IN THE TABLE BELOW

1	
2	
3	
4	
5a	
5b	
6a	
6b	
7a	
7b	
8a	
8b	
9a	
9b	
9c	

WARNING :

Read carefully, read the comments in italic, take your time, do not panic and double check what you write.

Write CLEARLY your answer where it is asked to.

The problems 4 and 5 are the most time consuming.

The test will last 50 minutes.

1. Calculate the derivative of $\vec{f}(t) = \cos 2t\vec{i} + e^{-t}\sin 3t\vec{j} + (t^2 + 2t)\vec{k}$

$$\vec{f'}(t) =$$

2. Calculate the derivative of $\vec{g}(t) = (e^{-t} \sin t \vec{i} + \ln(1 + t^2) \vec{j}) \times (3t^2 \vec{i} + t^3 \vec{j} + e^{-t} \vec{k})$

$$\frac{d\vec{g}}{dt} =$$

3. Find the unit tangent of $\vec{r}(t) = t\vec{i} + t^2\vec{j} + t^3\vec{k}$

$$\vec{T}(t) =$$

4. Find the length of the curve $\vec{r}(t) = 3t \cos t \ \vec{i} + 3t \sin t \ \vec{j} + 4t \ \vec{k}$ from t = 0 to t = 4(*Hint*: $if \sinh^{-1}(12/5) = \ln(5)$)

$$\ell =$$

5. Find the coordinates (x_M, y_M) of the maximum of $y = 3x - x^3$ and compute the curvature κ_M of the graph at this point.

(Hint : (i) compute the position of the local maximum (ii) find a parametric representation, for instance with the parameter t = x (iii) derive the expression of the curvature in term of t (iv) compute the velocity and the acceleration vectors at the maximum)

Maximum

$$(x_M, y_M) =$$

$$\kappa_M =$$

6. Find the domain and the range of the function

$$f(x, y, z) = -\frac{z^2}{\sqrt{x^2 - y^2}}$$

Range :

Domain

7. Identify the surfaces :

$$9x^2 + 4y^2 - 36z = 0$$

$$9x^2 + 4y^2 - 36z^2 = 1$$

Math 2401, September 20th, 2012

8. Identify the level curve of

$$f(x,y) = \frac{x^2}{x^2 + y^2}$$
, at $c = \frac{1}{4}$

and sketch it.

NAME of the level curve :

SKETCH

Math 2401, September 20th, 2012

9. Compute the partial derivatives of $f(x, y, z) = z \arctan(y/x)$

$$\frac{\partial f}{\partial x} =$$

$$\frac{\partial f}{\partial y} =$$

$$\frac{\partial f}{\partial z} =$$