Calculus III

Test \# 1
September 20th, 2012

First Name : \qquad
Last Name : \qquad
DO NOT WRITE IN THE TABLE BELOW
\(\left.\begin{array}{||c|c||}\hline \hline 1 \&

\hline 2 \&

\hline 3 \&

\hline 4 \&

\hline 5 \mathrm{a} \&

\hline 5 \mathrm{~b} \&

\hline 6 \mathrm{a}

6 \mathrm{~b}\end{array}\right]\)| 7 a |
| :--- |
| 7 b |
| 8 a |
| 8 b |
| 9 c |
| 9 |

WARNING :

Read carefully, read the comments in italic, take your time, do not panic and double check what you write.

Write CLEARLY your answer where it is asked to.

The problems 4 and 5 are the most time consuming.

The test will last 50 minutes.

1. Calculate the derivative of $\vec{f}(t)=\cos 2 t \vec{i}+e^{-t} \sin 3 t \vec{j}+\left(t^{2}+2 t\right) \vec{k}$

$$
\overrightarrow{f^{\prime}}(t)=
$$

2. Calculate the derivative of $\vec{g}(t)=\left(e^{-t} \sin t \vec{i}+\ln \left(1+t^{2}\right) \vec{j}\right) \times\left(3 t^{2} \vec{i}+\right.$ $\left.t^{3} \vec{j}+e^{-t} \vec{k}\right)$

$$
\frac{d \vec{g}}{d t}=
$$

3. Find the unit tangent of $\vec{r}(t)=t \vec{i}+t^{2} \vec{j}+t^{3} \vec{k}$

$$
\vec{T}(t)=
$$

4. Find the length of the curve $\vec{r}(t)=3 t \cos t \vec{i}+3 t \sin t \vec{j}+4 t \vec{k}$ from $t=0$ to $t=4$
(Hint : if $\sinh ^{-1}(12 / 5)=\ln (5)$)

$$
\ell=
$$

5. Find the coordinates $\left(x_{M}, y_{M}\right)$ of the maximum of $y=3 x-x^{3}$ and compute the curvature κ_{M} of the graph at this point.
(Hint : (i) compute the position of the local maximum (ii) find a parametric representation, for instance with the parameter $t=x$ (iii) derive the expression of the curvature in term of t (iv) compute the velocity and the acceleration vectors at the maximum)

Maximum

$$
\left(x_{M}, y_{M}\right)=
$$

$$
\kappa_{M}=
$$

6. Find the domain and the range of the function

$$
f(x, y, z)=-\frac{z^{2}}{\sqrt{x^{2}-y^{2}}}
$$

Range :

Domain

7. Identify the surfaces :

$$
9 x^{2}+4 y^{2}-36 z=0
$$

$$
9 x^{2}+4 y^{2}-36 z^{2}=1
$$

8. Identify the level curve of

$$
f(x, y)=\frac{x^{2}}{x^{2}+y^{2}}, \quad \text { at } \quad c=\frac{1}{4}
$$

and sketch it.

NAME of the level curve:

SKETCH
9. Compute the partial derivatives of $f(x, y, z)=z \arctan (y / x)$

$$
\frac{\partial f}{\partial x}=
$$

$$
\frac{\partial f}{\partial y}=
$$

$$
\frac{\partial f}{\partial z}=
$$

