
Math 4782, CS 4803, Phys 4782, February 2007 1

Georgia Tech Math, Physics & Computing

Math 4782, CS 4803, Phys 4782

Fast Fourier Transform

February, 2007

The fast Fourier transform (FFT) is an example of fast algorithm used by classical computers.
If N is an integer, the Fourier transform of a vector |z〉 ∈ C

N with components (z0, · · · , zN−1)
is given by

|z̃〉 = (FN |z〉)k =
1√
N

N−1
∑

l=0

e2ıπk·l/N zl . (1)

Whenever N = 2n, the numerical computation of FN becomes faster due to the structure of the
matrix of FN that will be investigated below. For simplicity, whenever N = 2n let Fn be the
matrix

Fn =
√

N FN N = 2n . (2)

1. Give the explicit expression of the matrices of F1 and F2.

2. Give the formula for Fn (see eq. (1)). What is the dimension of the matrix Fn ?

3. By decomposing the sum over l into the sums over l ′ whenever l = 2l′ or l = 2l′ + 1, show
that Fn can be expressed in term of Fn−1.

4. More precisely, show that the answer of the question (3.) above can be expressed as

Fn =

[

12n−1 Dn

12n−1 −Dn

]

·
[

Fn−1 0
0 Fn−1

]

· [Pn] , (3)

where 1L is the identity matrix of dimension L, Dn is the diagonal matrix of dimension
2n−1 with diagonal elements 1, λ, λ2, λ3, · · · , λ(2n−1

−1) respectively, if λ = e2ıπ/2n
, and [Pn]

is the matrix of the operator

Pn :





























c0

c1
...
...
...
...

c2n
−1





























−→





























c0

c2
...

c2n
−2

c1

c3
...

c2n
−1





























Math 4782, CS 4803, Phys 4782, February 2007 2

5. To transfer this computation easily on a computer, it is convenient to change the coordi-
nate labels as follows: with each integer k ∈ {0, 1, 2, · · · , 2n − 1}, is associated its dyadic
decomposition k = ε0 + 2ε1 + · · · + 2n−1εn−1 where the εr’s take on values 0 or 1. If
ε = (ε0, ε1, · · · , εn−1), then any sum over k is equivalent to summing over all possible ε’s.
Show that ε takes on 2n different values.
Show also that the operator Pn above can be expressed as

Pn : c(ε0, ε1, · · · , εn−1) 7→ c(εn−1, ε0, ε1, · · · , εn−2) (cyclic permutation of the εr’s) ,

where c(ε0, ε1, · · · , εn−1) = ck if k =
∑

r 2rεr.

6. The main idea of the FFT is to iterate the formula (3), namely expressing Fn−1 in term of
Fn−2, then in term of Fn−3, etc. all the way down to F1. In order to proceed, show that

(a) the matrix Fn−1 ⊕Fn−1, which appears in the middle of formula (3), does not change
the last digit εn−1;

(b) iterating j times, Fn−j occurs through a direct sum Fn−j ⊕ · · · ⊕ Fn−j containing 2j

terms;

(c) this last sum does not modifies the digits εn−j, εn−j+1, · · · , εn−1.

7. Applying the formula (3) to Fn−1 implies using P̃n−1 = Pn−1 ⊕ Pn−1. Iterating, this gives
P̃n−j = Pn−j ⊕ · · · ⊕ Pn−j (2j terms).

(a) Compute the action of P̃n−1, then P̃n−2.

(b) Deduce what is the action of P̃n−j for all j’s.

(c) Prove that the product P̂n = P̃2P̃3 · · · P̃n corresponds to the transformation

P̂n : c(ε0, ε1, · · · , εn−1) 7→ c(εn−1, εn−2, · · · , ε2, ε1) .

(Hint: use (6c.))

8. Let c be the vector giving the initial data, namely the vector that is to be Fourier trans-
formed. Let c(ε0, ε1, · · · , εn−1) denote its components. Then let y0 denote the vector P̂nc,
given by inverting the order of the digits.

(a) Show that the application of F1 (1st step), gives the vector y1 in the form

y1(ε0, ε1, · · · , εn−1) = y0(0, ε1, · · · , εn−1) + (−1)ε1y0(1, ε1, · · · , εn−1)

=
∑

η=0,1

(−1)ηε0y0(η, ε1, · · · , εn−1)

(b) Using the remark made in (6c.), show that iterating the left part of the formula (3),
gives a sequence y0, y1, · · · , yn of vectors defined recursively by

yk+1(ε0, ε1, · · · , εn−1) =
∑

η=0,1

e
2ıπη(ε0+2ε1+···+2kεk)

2k+1 yk(ε0, · · · , εk−1, η, εk+1, · · · , εn−1)

so that yn is the result.

Math 4782, CS 4803, Phys 4782, February 2007 3

(c) Show that the number of operations (multiplications) is of the order of n2n = N ln2 N .
Compare with the number of multiplications N 2 required by applying directly the
formula (1). Compare these two numbers whenever n = 20.

Math 4782, CS 4803, Phys 4782, February 2007 4

Georgia Tech Math, Physics & Computing

Math 4782, CS 4803, Phys 4782

Fast Fourier Transform

Correction

By definition (see eq. (2,1))

(Fn|z〉)k =

2n
−1

∑

l=0

e2ıπkl/2n

zl . (4)

1. For n = 1 then e2ıπkl/2 = (−1)kl, while, for n = 2, e2ıπkl/4 = (ı)kl so that

F1 =

[

1 1
1 −1

]

, F2 =









1 1 1 1
1 ı −1 −ı
1 −1 1 −1
1 −ı −1 ı









. (5)

2. The formula (4) gives the matrix elements of Fn

(Fn)kl = e2ıπkl/2n

.

3. The eq. (4) can be written by separating the sum over l into a sum over l = 2l ′ (with
0 ≤ l′ ≤ 2n−1 − 1) and the sum over l = 2l′ + 1. Then e2ıπk(2l′)/2n

= e2ıπkl′/2n−1
and

e2ıπk(2l′+1)/2n
= e2ıπk′/2n

e2ıπkl′/2n−1
. This gives

(Fn|z〉)k =
2n−1

−1
∑

l′=0

e2ıπkl′/2n−1
z2l′ = e2ıπk/2n

2n−1
−1

∑

l′=0

e2ıπkl′/2n−1
z2l′+1 .

To interpret this decomposition let |zod〉 and |zev〉 be the vectors of dimension 2n−1 with
coordinates (|zod〉)k = z2k+1 and (|zev〉)k = z2k respectively. Remarking that

e2ıπ(k+2n−1)l′/2n−1
= e2ıπkl′/2n−1

, e2ıπ(k+2n−1)/2n

= −e2ıπk/2n

,

leads to

(Fn|z〉)k = (Fn−1|zev〉)k + e2ıπk/2n

(Fn−1|zod〉)k , .

0 ≤ k ≤ 2n−1 − 1 (6)

(Fn|z〉)k+2n−1 = (Fn−1|zev〉)k − e2ıπk/2n

(Fn−1|zod〉)k . .

Math 4782, CS 4803, Phys 4782, February 2007 5

4. Let Dn be the diagonal matrix of dimension 2n−1 with (Dn)kl = e2ıπk/2n

δkl. Then the
previous expression (6) can be written in matrix form as

Fn|z〉 =

[

12n−1 Dn

12n−1 −Dn

] [

Fn−1 0
0 Fn−1

] [

|zev〉
|zod〉

]

.

If Pn is the operator defined by

Pn|z〉 =

[

|zev〉
|zod〉

]

,

the last equation leads to the formula (3).

5. The dyadic decomposition of integers smaller than 2n gives a one-to-one correspondence
between [0, 2n − 1] and the set {0, 1}×n of families ε = (ε0, ε1, · · · , εn−1) where εr ∈ {0, 1}
is the r-th digit. Since each εr takes on two values and since there are n such digits, ε
takes on 2n values.

Moreover

0 ≤ k ≤ 2n−1 − 1 ⇔ εn−1 = 0 , 2n−1 ≤ k ≤ 2n − 1 ⇔ εn−1 = 1 .

In particular if 0 ≤ k ≤ 2n−1 − 1

(Pn|c〉)k = (Pn|c〉)(ε0, · · · , εn−2, 0) , (Pn|c〉)k+2n−1 = (Pn|c〉)(ε0, · · · , εn−2, 1) .

On the other hand, if k ≤ 2n−1 − 1, then 2k = 2ε0 + 22ε1 + · · · + 2n−1εn−2, so that
c2k = c(0, ε0, · · · , εn−2). In much the same way, 2k + 1 = 1 + 2ε0 + 22ε1 + · · · + 2n−1εn−2,
so that c2k+1 = c(1, ε0, · · · , εn−2). Therefore in both cases εn−1 = 0 and εn−1 = 1

(Pn|c〉)(ε0, · · · , εn−2, εn−1) = c(εn−1, ε0, · · · , εn−2) . (7)

6. (a) A 2n × 2n matrix of the form

A =

[

A0 0
0 A1

]

, (8)

where the Ai’s are 2n−1 × 2n−1 matrices, is denoted A0 ⊕ A1. In particular it gives

(A|c〉)k =

2n−1
−1

∑

l=0

(A0)
l
k cl ,

0 ≤ k ≤ 2n−1 − 1 ,

(A|c〉)k+2n−1 =

2n−1
−1

∑

l=0

(A1)
l
k cl+2n−1 ,

Math 4782, CS 4803, Phys 4782, February 2007 6

where the matrix elements (Ai)kl are written with lower and upper indices (Ai)
l
k

instead. Using the previous arguments, this last formula can be expressed in tem of
the digits as follows

(A|c〉)(ε0, · · · , εn−2, εn−1) =

1
∑

η0=0

· · ·
1

∑

ηn−2=0

(

Aεn−1

)η0,···,ηn−2

ε0,···,εn−2
c(η0, · · · , ηn−2, εn−1) .

(9)

In other words, such a matrix does not touch the last digit εn−1. This argument
applies in particular to the middle matrix in eq. (3) that is Fn−1 ⊕ Fn−1.

(b) Applying a second time eq. (3) to each of the two Fn−1’s appearing above gives a
decomposition of the form

Fn =

[

12n−1 Dn

12n−1 −Dn

]

·









[

12n−2 Dn−1

12n−2 −Dn−1

]

0

0

[

12n−2 Dn−1

12n−2 −Dn−1

]









· · ·

· · ·









Fn−2 0 0 0
0 Fn−2 0 0
0 0 Fn−2 0
0 0 0 Fn−2









·
[

[Pn−1] 0
0 [Pn−1]

]

· [Pn] , (10)

Hence, iterating j-times eq. (3) will give, in the middle, the direct sum of 2j terms
Fn−j ⊕ · · · ⊕ Fn−j .

(c) Using the argument above, such a matrix does not modify the last j-digits of the
coordinates namely the εn−j, · · · , εn−1.

7. (a) Since P̃n−1 has the structure of the A-matrice (8), it does not affect the last digit.
Moreover, it acts as Pn−1 on the previous digits, so that (see eq. (7))

(

P̃n−1|c〉
)

(ε0, · · · , εn−2, εn−1) = (|c〉) (εn−2, ε0, · · · , εn−3, εn−1) . (11)

Similarly P̃n−2 does no modify εn−2, εn−1 and acts like Pn−2 on the first (n−2)-digits,
so that

(

P̃n−2|c〉
)

(ε0, · · · , εn−2, εn−1) = (|c〉) (εn−3, ε0, · · · , εn−4, εn−2, εn−1) . (12)

(b) More generally, the same argument leads to

P̃n−j |c〉(ε0, · · · , εn−j−1, εn−j, · · · , εn−1) = |c〉(εn−j−1, ε0, · · · , εn−j−2, εn−j , · · · , εn−1).
(13)

Math 4782, CS 4803, Phys 4782, February 2007 7

(c) Thanks to (13), if P̂k = P̃n−k+2 · · · P̃n, an iteration leads to

P̂n|c〉(ε0, · · · , εn−1) = P̂n−1|c〉(ε1, ε0, ε2, · · · , εn−1)

= P̂n−2|c〉(ε2, ε1, ε0, ε3, · · · , εn−1)

= · · ·
= |c〉(εn−1, εn−2, · · · ε1, ε0) .

8. (a) Thanks to (5), the matrix elements of F1 are given by (F1)
η
ε = (−1)εη with ε, η ∈

{0, 1}. Moreover, the first step consists in applying F̃1 = F1 ⊕· · ·⊕F1 (2n−1 factors).
Thanks to 6.(c), it does not affect the digits ε1, · · · , εn−1. Therefore, if F̃1|y0〉 = |y1〉

y1(ε0, ε1, · · · , εn−1) =

1
∑

η=0

(−1)ηε0 y0(η, ε1, · · · , εn−1)

= y0(0, ε1, · · · , εn−1) + (−1)ε1 y0(1, ε1, · · · , εn−1)

(b) Let D̃n−j denote the direct sum Dn−j ⊕ · · · ⊕ Dn−j (2j terms) where

Dn−j =

[

12n−j−1 Dn−j

12n−j−1 −Dn−j

]

Then D̃1 = F̃1 and the same argument applied to |yk〉 = D̃kD̃k−1 · · · D̃1|y0〉 gives

yk+1(ε0, ε1, · · · , εn−1) =
∑

η=0,1

e
2ıπη(ε0+2ε1+···+2kεk)

2k+1 yk(ε0, · · · , εk−1, η, εk+1, · · · , εn−1)

since Dn is diagonal (see 4.).

(c) Starting from |c〉, which contains N = 2n complex numbers, |y0〉 consists simply
in relabeling the initial datas. For each set of n-digits ε = (ε0, · · · , εn−1), |yk+1〉 is
obtained from |yk〉 by applying one multiplication by an exponential factor and one
addition. Thus for each components of |yn〉 requires n multiplications and n additions
and n exponential factors. Since there are N = 2n such components, the computation
of the Fourier transform of |c〉 requires 3nN = 3N ln2 N operations.

A direct application of matrix multiplication, with the matrix of the Fourier trans-
form, requires for each component, N exponential factors, N multiplications and N
additions. Thus it gives 3N 2 operations instead, namely N/ ln2 N times the number
required in the FFT. For n = 20, N = 220 = 10242 = 1.05 × 106. Thus the FFT will
require N/ ln2 N = 5 × 104 less computer time than the ordinary method!

? ? ?

