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FAST FOURIER TRANSFORM

February, 2007

The fast Fourier transform (FFT) is an example of fast algorithm used by classical computers.
If N is an integer, the Fourier transform of a vector |z) € CV with components (zq,---,2nx_1)
is given by

;N
2) = (FN[2)y = \/—Nzemﬂk'lﬂvzl. (1)
=0

Whenever N = 2™ the numerical computation of Fn becomes faster due to the structure of the
matrix of Fy that will be investigated below. For simplicity, whenever N = 2" let F}, be the
matrix

F, = VNFy N = 2", (2)
1. Give the explicit expression of the matrices of Fy and Fb.

2. Give the formula for F}, (see eq. (1)). What is the dimension of the matrix F,, ?

3. By decomposing the sum over [ into the sums over I’ whenever [ = 21’ or [ = 2/’ 4+ 1, show
that F),, can be expressed in term of F,,_1.

4. More precisely, show that the answer of the question (3.) above can be expressed as

. 1on-1 Dy, F,_1 0
e el s ®

where 1 is the identity matrix of dimension L, D,, is the diagonal matrix of dimension
2n~1 with diagonal elements 1, A\, A2, \3,--- @ -n respectively, if A = e27/2" | and [P,]
is the matrix of the operator

Co €o
Cc1 C2
Con _
Pn 27 —2
C1
C3
| Can—1 | | Con—1 |
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5. To transfer this computation easily on a computer, it is convenient to change the coordi-
nate labels as follows: with each integer k € {0,1,2,---,2™ — 1}, is associated its dyadic
decomposition k = €y + 2e; + --- + 2" Le,_; where the €,’s take on values 0 or 1. If
€ = (eg,€1,++,€n—1), then any sum over k is equivalent to summing over all possible €’s.
Show that ¢ takes on 2™ different values.

Show also that the operator P,, above can be expressed as

P, : c(ep, €1,y €n—1) — C(€p—1,€0,€1, ", €n—2) (cyclic permutation of the €,s),

where c(€g, €1, -, en—1) = if k=) 2",

6. The main idea of the FFT is to iterate the formula (3), namely expressing F),,_; in term of
F,,_o, then in term of F;,_3, etc. all the way down to Fy. In order to proceed, show that

(a) the matrix F,,_1 @ F,_1, which appears in the middle of formula (3), does not change
the last digit €,_1;

(b) iterating j times, F,_; occurs through a direct sum F,,_; & --- & F,,_; containing 2/
terms;
(c) this last sum does not modifies the digits €,—j, €n—jy1,- -, €n—1.
7. 4pplying the formula (3) to Fn_l implies using P,_; = Py_1 & P,_1. Iterating, this gives

P, j=P, j® - & P,_; (2 terms).

(a) Compute the action of P,_1, then P,_o.

(b) Deduce what is the action of P,_; for all j’s.

(c¢) Prove that the product Pn = ]52]53 . ]5” corresponds to the transformation

~

P, : cleo €1, -+, €p—1) — c(€n—1,€n—2, -+, €2,€1).
(Hint: use (6c¢.))

8. Let ¢ be the vector giving the initial data, namely the vector that is to be Fourier trans-
formed. Let c(eg, €1, -+, €,—1) denote its components. Then let yg denote the vector P,c,
given by inverting the order of the digits.

(a) Show that the application of Fy (1st step), gives the vector y; in the form

yi(eo €1, €n—1) = wo(0,€1, - en—1) + (=) yo(1,€1,- -, €n—1)
= Z (=1)™yo(n, €1, €n—1)
n=0,1

(b) Using the remark made in (6c.), show that iterating the left part of the formula (3),
gives a sequence yo, Y1, - - -, Yn Of vectors defined recursively by

217\'77(60+261+»-»+2kek)
yk+l(€07617”'76n—1) — E € 2k+1 yk‘(e(]a"'aek—lanaek-i-l)"'aen—l)
n=0,1

so that y,, is the result.
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(c) Show that the number of operations (multiplications) is of the order of n2"™ = N lny N.

Compare with the number of multiplications N? required by applying directly the
formula (1). Compare these two numbers whenever n = 20.
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Correction
By definition (see eq. (2,1))
2" —1
(Fn‘z>)k — Z e2z7rkl/2 2. (4)
=0

1. For n =1 then e*™*/2 = (—1)*  while, for n = 2, 28/ = (3)¥ 50 that

F1:|:11:|, FQZ

— =

|

—_
—
|

—_
—
ot
N~—

2. The formula (4) gives the matrix elements of F},

(Fn)kl — e2z7rkl/2”.

3. The eq. (4) can be written by separating the sum over [ into a sum over [ = 2I’ (with
0 <! <27 ! —1) and the sum over [ = 2’ + 1. Then e2mk(2)/2" — 2wkl /2771 o

e2mk(2U+1) /2™ _ 2wk /27 2umkl /271 g gives
2n71_1 27L71_1
/ jon—1 n ! jon—1
(Fn|z>)k _ § : e2z7rl~cl /2 2oy = e2z7rk/2 § : e2z7rkl /2 Zol41 -
I'=0 I'=0

To interpret this decomposition let |z,q) and |ze,) be the vectors of dimension 27~! with
coordinates (|zoq))k = z2k+1 and (|zey))r = 22k respectively. Remarking that

n—1\7/ /jon—1 / jon—1 n—1 n n
e2z7r(k+2 W /2 — e2z7rl~cl /2 e2z7r(k—|-2 )/2n _e2z7rk/2 7

)

leads to

(Fn‘z>)k = (Fn—1’26v>)k + e2imk/2" (Fn—1’20d>)k ) .
0<k<ovli_1 (6)
(Ful2Ngsant = (Fo1lzeo))k — €™ (Foo1|20a)) -
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4. Let D, be the diagonal matrix of dimension 2"~! with (D,)n = €*7*/2"5,;. Then the
previous expression (6) can be written in matrix form as

o 127L71 Dn Fn—l 0 |Z6'U>
e | s
If P, is the operator defined by
|2ew) ]
PTL V4 - 9
| > |: |zod>

the last equation leads to the formula (3).

5. The dyadic decomposition of integers smaller than 2" gives a one-to-one correspondence
between [0,2" — 1] and the set {0,1}*" of families € = (€g, €1, -, €n—1) Where €, € {0,1}
is the r-th digit. Since each ¢, takes on two values and since there are n such digits, €
takes on 2" values.

Moreover
0<k<2"!'_-1 o¢_1=0, Ml p<om 1 ©ep=1.
In particular if 0 < k < on-1_1
(Pale))e = (Palc))(€o,- - €n—2,0), (Pale))gon—r = (Pulc))(€o, -+, en—2,1).
On the other hand, if k¥ < 277! — 1, then 2k = 2¢y + 2%¢; + --- + 2" L¢,_o, so that

car = c(0, €0, -, €,_2). In much the same way, 2k +1 = 1+ 2eq + 2%¢; + -+ + 2" Le, o,
so that cor11 = c(1,€q, -, €n—2). Therefore in both cases ¢,1 =0 and ¢,_1 =1

(Pn’c>)(607 crr,€En—2, en—l) = C(6n—17 €0, " 7671—2) . (7)

6. (a) A 2" x 2" matrix of the form
[ 4 0

where the A;’s are 27! x 27~ matrices, is denoted Ay @ A;. In particular it gives

2n-1-1
(Al = (Ao)y,
=0
0<k<2n!_1,
|
(Ale))gpan—1 = (A1)} cryan—1,
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(b)

where the matrix elements (A;)y; are written with lower and upper indices (AZ)fLC

instead. Using the previous arguments, this last formula can be expressed in tem of
the digits as follows

1 1
(A‘C))(GQ, Ty En—2, 6n—l) = Z to Z (Aen71)z()):::::g::22 6(7707 oy Tin—-2, 6n—l) .
77():0 7777,72:0
(9)

In other words, such a matrix does not touch the last digit €,_1. This argument
applies in particular to the middle matrix in eq. (3) that is Fj,—1 @ F,,_1.

Applying a second time eq. (3) to each of the two F,_i’s appearing above gives a
decomposition of the form

12n72 DTL—I 0
F 1277,71 Dn . 121172 _Dn_l
" o 1277,71 _DTL 0 1277,72 Dn_l
12n—2 —Dn_l
Fo_9 0 0 0
0 Fo_ 0 0 [Pn—l] 0
0 0 Foo 0 [ 0 [pa | P (10)
0 0 0 Fhoa

Hence, iterating j-times eq. (3) will give, in the middle, the direct sum of 27 terms
Foj® - ®F,

Using the argument above, such a matrix does not modify the last j-digits of the
coordinates namely the €,_;, -+, €,_1.

Since P,_; has the structure of the A-matrice (8), it does not affect the last digit.
Moreover, it acts as P,_; on the previous digits, so that (see eq. (7))

(pn—l‘c>) (€0, s €n—2,€n—1) = (|¢)) (€n—2, €0, ", €n—3,€n—1) . (11)

Similarly P,_5 does no modify €,_2,€,-1 and acts like P, _o on the first (n— 2)-digits,
so that

(Pa-2le)) (cos s €n-2se0-1) = (16)) (en-s, €0, en-tr 2, €n-1).  (12)

More generally, the same argument leads to

P ile)(€0s s eni1s €njr s €n1) = 1) (€n—j1,€0s " " s Enj—2y €n—js " s En_1)-
(13)
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(c) Thanks to (13), if b, = Py_ito - P,, an iteration leads to

>(€17 €0,€2, " aen—l)

Pn_1|c
Pn—2|c>(€27 €1,€0,€3, " 7€n—1)

= |c)(en—1,€n—2, - €1,€0) .

8. (a) Thanks to (5), the matrix elements of Fy are given by (F1)! = (1) with ¢,7 €
{0,1}. Moreover, the first step consists in applying Fy} = F1 ®---® F} (2~"_1 factors).
Thanks to 6.(c), it does not affect the digits €1, -, €,—1. Therefore, if Fi|yg) = |y1)

yi(€os €1, - €n—1) = (=)™ yo(n, €1, -, €p—1)

B

3
I
o

= Y 07617'”76n—1)+(_1)61 90(17617‘“7%—1)
(b) Let D,,_; denote the direct sum D,,_; @ --- ® D,,_; (2 terms) where

o 12n—j—1 Dn—j
Py = [12nj1 ~Dyj

Then D; = F} and the same argument applied to |yi) = Dy Dj_1 - -- D1lyo) gives
217\'77(60+251+...+2k€k)

yk+l(€07617”'76n—1) — E € 2k+1 yk‘(e(]a"'aek—lanaek-i-l)"'aen—l)
n=0,1

since D,, is diagonal (see 4.).

(c) Starting from |c¢), which contains N = 2" complex numbers, |yg) consists simply

in relabeling the initial datas. For each set of n-digits € = (eg," ", €n—1), |ygr+1) IS
obtained from |yi) by applying one multiplication by an exponential factor and one
addition. Thus for each components of |y, ) requires n multiplications and n additions
and n exponential factors. Since there are N = 2" such components, the computation
of the Fourier transform of |¢) requires 3nN = 3N Iny N operations.
A direct application of matrix multiplication, with the matrix of the Fourier trans-
form, requires for each component, N exponential factors, N multiplications and N
additions. Thus it gives 3N? operations instead, namely N/Ins N times the number
required in the FFT. For n = 20, N = 220 = 10242 = 1.05 x 10°. Thus the FFT will
require N/Ing N =5 x 10* less computer time than the ordinary method!



