## Fast Fourier Transform

February, 2007

The fast Fourier transform (FFT) is an example of fast algorithm used by classical computers. If $N$ is an integer, the Fourier transform of a vector $|z\rangle \in \mathbb{C}^{N}$ with components $\left(z_{0}, \cdots, z_{N-1}\right)$ is given by

$$
\begin{equation*}
|\tilde{z}\rangle=\left(\mathcal{F}_{N}|z\rangle\right)_{k}=\frac{1}{\sqrt{N}} \sum_{l=0}^{N-1} e^{22 \pi k \cdot l / N} z_{l} . \tag{1}
\end{equation*}
$$

Whenever $N=2^{n}$, the numerical computation of $\mathcal{F}_{N}$ becomes faster due to the structure of the matrix of $\mathcal{F}_{N}$ that will be investigated below. For simplicity, whenever $N=2^{n}$ let $F_{n}$ be the matrix

$$
\begin{equation*}
F_{n}=\sqrt{N} \mathcal{F}_{N} \quad N=2^{n} \tag{2}
\end{equation*}
$$

1. Give the explicit expression of the matrices of $F_{1}$ and $F_{2}$.
2. Give the formula for $F_{n}$ (see eq. (1)). What is the dimension of the matrix $F_{n}$ ?
3. By decomposing the sum over $l$ into the sums over $l^{\prime}$ whenever $l=2 l^{\prime}$ or $l=2 l^{\prime}+1$, show that $F_{n}$ can be expressed in term of $F_{n-1}$.
4. More precisely, show that the answer of the question (3.) above can be expressed as

$$
F_{n}=\left[\begin{array}{cc}
\mathbf{1}_{2^{n-1}} & D_{n}  \tag{3}\\
\mathbf{1}_{2^{n-1}} & -D_{n}
\end{array}\right] \cdot\left[\begin{array}{cc}
F_{n-1} & 0 \\
0 & F_{n-1}
\end{array}\right] \cdot\left[P_{n}\right]
$$

where $\mathbf{1}_{L}$ is the identity matrix of dimension $L, D_{n}$ is the diagonal matrix of dimension $2^{n-1}$ with diagonal elements $1, \lambda, \lambda^{2}, \lambda^{3}, \cdots, \lambda^{\left(2^{n-1}-1\right)}$ respectively, if $\lambda=e^{2 \tau \pi / 2^{n}}$, and $\left[P_{n}\right]$ is the matrix of the operator

$$
P_{n}:\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
c_{2^{n}-1}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
c_{0} \\
c_{2} \\
\vdots \\
c_{2^{n}-2} \\
c_{1} \\
c_{3} \\
\vdots \\
c_{2^{n}-1}
\end{array}\right]
$$

5. To transfer this computation easily on a computer, it is convenient to change the coordinate labels as follows: with each integer $k \in\left\{0,1,2, \cdots, 2^{n}-1\right\}$, is associated its dyadic decomposition $k=\epsilon_{0}+2 \epsilon_{1}+\cdots+2^{n-1} \epsilon_{n-1}$ where the $\epsilon_{r}$ 's take on values 0 or 1 . If $\underline{\epsilon}=\left(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n-1}\right)$, then any sum over $k$ is equivalent to summing over all possible $\underline{\epsilon}$ 's. Show that $\underline{\epsilon}$ takes on $2^{n}$ different values.
Show also that the operator $P_{n}$ above can be expressed as

$$
P_{n}: c\left(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n-1}\right) \mapsto c\left(\epsilon_{n-1}, \epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n-2}\right) \quad \text { (cyclic permutation of the } \epsilon_{r} \text { 's), }
$$

where $c\left(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n-1}\right)=c_{k}$ if $k=\sum_{r} 2^{r} \epsilon_{r}$.
6. The main idea of the FFT is to iterate the formula (3), namely expressing $F_{n-1}$ in term of $F_{n-2}$, then in term of $F_{n-3}$, etc. all the way down to $F_{1}$. In order to proceed, show that
(a) the matrix $F_{n-1} \oplus F_{n-1}$, which appears in the middle of formula (3), does not change the last digit $\epsilon_{n-1}$;
(b) iterating $j$ times, $F_{n-j}$ occurs through a direct sum $F_{n-j} \oplus \cdots \oplus F_{n-j}$ containing $2^{j}$ terms;
(c) this last sum does not modifies the digits $\epsilon_{n-j}, \epsilon_{n-j+1}, \cdots, \epsilon_{n-1}$.
7. Applying the formula (3) to $F_{n-1}$ implies using $\tilde{P}_{n-1}=P_{n-1} \oplus P_{n-1}$. Iterating, this gives $\tilde{P}_{n-j}=P_{n-j} \oplus \cdots \oplus P_{n-j}\left(2^{j}\right.$ terms $)$.
(a) Compute the action of $\tilde{P}_{n-1}$, then $\tilde{P}_{n-2}$.
(b) Deduce what is the action of $\tilde{P}_{n-j}$ for all $j$ 's.
(c) Prove that the product $\hat{P}_{n}=\tilde{P}_{2} \tilde{P}_{3} \cdots \tilde{P}_{n}$ corresponds to the transformation

$$
\hat{P}_{n}: c\left(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n-1}\right) \mapsto c\left(\epsilon_{n-1}, \epsilon_{n-2}, \cdots, \epsilon_{2}, \epsilon_{1}\right) .
$$

(Hint: use (6c.))
8. Let $c$ be the vector giving the initial data, namely the vector that is to be Fourier transformed. Let $c\left(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n-1}\right)$ denote its components. Then let $y_{0}$ denote the vector $\hat{P}_{n} c$, given by inverting the order of the digits.
(a) Show that the application of $F_{1}$ (1st step), gives the vector $y_{1}$ in the form

$$
\begin{aligned}
y_{1}\left(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n-1}\right) & =y_{0}\left(0, \epsilon_{1}, \cdots, \epsilon_{n-1}\right)+(-1)^{\epsilon_{1}} y_{0}\left(1, \epsilon_{1}, \cdots, \epsilon_{n-1}\right) \\
& =\sum_{\eta=0,1}(-1)^{\eta \epsilon_{0}} y_{0}\left(\eta, \epsilon_{1}, \cdots, \epsilon_{n-1}\right)
\end{aligned}
$$

(b) Using the remark made in (6c.), show that iterating the left part of the formula (3), gives a sequence $y_{0}, y_{1}, \cdots, y_{n}$ of vectors defined recursively by

$$
y_{k+1}\left(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n-1}\right)=\sum_{\eta=0,1} e^{\frac{2 \pi \eta\left(\epsilon_{0}+2 \epsilon_{1}+\cdots+2^{k} \epsilon_{k}\right)}{2^{k+1}}} y_{k}\left(\epsilon_{0}, \cdots, \epsilon_{k-1}, \eta, \epsilon_{k+1}, \cdots, \epsilon_{n-1}\right)
$$

so that $y_{n}$ is the result.
(c) Show that the number of operations (multiplications) is of the order of $n 2^{n}=N \ln _{2} N$. Compare with the number of multiplications $N^{2}$ required by applying directly the formula (1). Compare these two numbers whenever $n=20$.

## Fast Fourier Transform

## Correction

By definition (see eq. $(2,1)$ )

$$
\begin{equation*}
\left(F_{n}|z\rangle\right)_{k}=\sum_{l=0}^{2^{n}-1} e^{2 \imath \pi k l / 2^{n}} z_{l} . \tag{4}
\end{equation*}
$$

1. For $n=1$ then $e^{2 \imath \pi k l / 2}=(-1)^{k l}$, while, for $n=2, e^{2 \imath \pi k l / 4}=(\imath)^{k l}$ so that

$$
F_{1}=\left[\begin{array}{cc}
1 & 1  \tag{5}\\
1 & -1
\end{array}\right], \quad F_{2}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \imath & -1 & -\imath \\
1 & -1 & 1 & -1 \\
1 & -\imath & -1 & \imath
\end{array}\right]
$$

2. The formula (4) gives the matrix elements of $F_{n}$

$$
\left(F_{n}\right)_{k l}=e^{22 \pi k l / 2^{n}}
$$

3. The eq. (4) can be written by separating the sum over $l$ into a sum over $l=2 l^{\prime}$ (with $\left.0 \leq l^{\prime} \leq 2^{n-1}-1\right)$ and the sum over $l=2 l^{\prime}+1$. Then $e^{2 \imath \pi k\left(2 l^{\prime}\right) / 2^{n}}=e^{2 \imath \pi k l^{\prime} / 2^{n-1}}$ and $e^{2 \imath \pi k\left(2 l^{\prime}+1\right) / 2^{n}}=e^{2 \imath \pi k^{\prime} / 2^{n}} e^{2 \imath \pi k l^{\prime} / 2^{n-1}}$. This gives

$$
\left(F_{n}|z\rangle\right)_{k}=\sum_{l^{\prime}=0}^{2^{n-1}-1} e^{2 \imath \pi k l^{\prime} / 2^{n-1}} z_{2 l^{\prime}}=e^{2 \imath \pi k / 2^{n}} \sum_{l^{\prime}=0}^{2^{n-1}-1} e^{2 \imath \pi k l^{\prime} / 2^{n-1}} z_{2 l^{\prime}+1}
$$

To interpret this decomposition let $\left|z_{o d}\right\rangle$ and $\left|z_{e v}\right\rangle$ be the vectors of dimension $2^{n-1}$ with coordinates $\left(\left|z_{o d}\right\rangle\right)_{k}=z_{2 k+1}$ and $\left(\left|z_{e v}\right\rangle\right)_{k}=z_{2 k}$ respectively. Remarking that

$$
e^{2 n \pi\left(k+2^{n-1}\right) l^{\prime} / 2^{n-1}}=e^{2 \imath \pi k l^{\prime} / 2^{n-1}}, \quad e^{2 \imath \pi\left(k+2^{n-1}\right) / 2^{n}}=-e^{2 \imath \pi k / 2^{n}}
$$

leads to

$$
\begin{align*}
\left(F_{n}|z\rangle\right)_{k} & =\left(F_{n-1}\left|z_{e v}\right\rangle\right)_{k}+e^{2 \imath \pi k / 2^{n}}\left(F_{n-1}\left|z_{o d}\right\rangle\right)_{k}, \\
\left(F_{n}|z\rangle\right)_{k+2^{n-1}} & =\left(F_{n-1}\left|z_{e v}\right\rangle\right)_{k}-e^{2 \imath \pi k / 2^{n}}\left(F_{n-1}\left|z_{o d}\right\rangle\right)_{k} \tag{6}
\end{align*}
$$

4. Let $D_{n}$ be the diagonal matrix of dimension $2^{n-1}$ with $\left(D_{n}\right)_{k l}=e^{2 \pi \pi k / 2^{n}} \delta_{k l}$. Then the previous expression (6) can be written in matrix form as

$$
F_{n}|z\rangle=\left[\begin{array}{cc}
\mathbf{1}_{2^{n-1}} & D_{n} \\
\mathbf{1}_{2^{n-1}} & -D_{n}
\end{array}\right]\left[\begin{array}{cc}
F_{n-1} & 0 \\
0 & F_{n-1}
\end{array}\right]\left[\begin{array}{l}
\left|z_{e v}\right\rangle \\
\left|z_{o d}\right\rangle
\end{array}\right] .
$$

If $P_{n}$ is the operator defined by

$$
P_{n}|z\rangle=\left[\begin{array}{l}
\left|z_{e v}\right\rangle \\
\left|z_{o d}\right\rangle
\end{array}\right],
$$

the last equation leads to the formula (3).
5. The dyadic decomposition of integers smaller than $2^{n}$ gives a one-to-one correspondence between $\left[0,2^{n}-1\right]$ and the set $\{0,1\}^{\times n}$ of families $\underline{\epsilon}=\left(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n-1}\right)$ where $\epsilon_{r} \in\{0,1\}$ is the $r$-th digit. Since each $\epsilon_{r}$ takes on two values and since there are $n$ such digits, $\underline{\epsilon}$ takes on $2^{n}$ values.
Moreover

$$
0 \leq k \leq 2^{n-1}-1 \Leftrightarrow \epsilon_{n-1}=0, \quad 2^{n-1} \leq k \leq 2^{n}-1 \Leftrightarrow \epsilon_{n-1}=1 .
$$

In particular if $0 \leq k \leq 2^{n-1}-1$

$$
\left(P_{n}|c\rangle\right)_{k}=\left(P_{n}|c\rangle\right)\left(\epsilon_{0}, \cdots, \epsilon_{n-2}, 0\right), \quad\left(P_{n}|c\rangle\right)_{k+2^{n-1}}=\left(P_{n}|c\rangle\right)\left(\epsilon_{0}, \cdots, \epsilon_{n-2}, 1\right) .
$$

On the other hand, if $k \leq 2^{n-1}-1$, then $2 k=2 \epsilon_{0}+2^{2} \epsilon_{1}+\cdots+2^{n-1} \epsilon_{n-2}$, so that $c_{2 k}=c\left(0, \epsilon_{0}, \cdots, \epsilon_{n-2}\right)$. In much the same way, $2 k+1=1+2 \epsilon_{0}+2^{2} \epsilon_{1}+\cdots+2^{n-1} \epsilon_{n-2}$, so that $c_{2 k+1}=c\left(1, \epsilon_{0}, \cdots, \epsilon_{n-2}\right)$. Therefore in both cases $\epsilon_{n-1}=0$ and $\epsilon_{n-1}=1$

$$
\begin{equation*}
\left(P_{n}|c\rangle\right)\left(\epsilon_{0}, \cdots, \epsilon_{n-2}, \epsilon_{n-1}\right)=c\left(\epsilon_{n-1}, \epsilon_{0}, \cdots, \epsilon_{n-2}\right) \tag{7}
\end{equation*}
$$

6. (a) A $2^{n} \times 2^{n}$ matrix of the form

$$
A=\left[\begin{array}{cc}
A_{0} & 0  \tag{8}\\
0 & A_{1}
\end{array}\right]
$$

where the $A_{i}$ 's are $2^{n-1} \times 2^{n-1}$ matrices, is denoted $A_{0} \oplus A_{1}$. In particular it gives

$$
\begin{array}{rlr}
(A|c\rangle)_{k} & =\sum_{l=0}^{2^{n-1}-1}\left(A_{0}\right)_{k}^{l} c_{l}, & \\
(A|c\rangle)_{k+2^{n-1}} & =\sum_{l=0}^{2^{n-1}-1}\left(A_{1}\right)_{k}^{l} c_{l+2^{n-1}}, &
\end{array}
$$

where the matrix elements $\left(A_{i}\right)_{k l}$ are written with lower and upper indices $\left(A_{i}\right)_{k}^{l}$ instead. Using the previous arguments, this last formula can be expressed in tem of the digits as follows

$$
\begin{equation*}
(A|c\rangle)\left(\epsilon_{0}, \cdots, \epsilon_{n-2}, \epsilon_{n-1}\right)=\sum_{\eta_{0}=0}^{1} \cdots \sum_{\eta_{n-2}=0}^{1}\left(A_{\epsilon_{n-1}}\right)_{\epsilon_{0}, \cdots, \cdots, \epsilon_{n-2}}^{\eta_{0}, \cdots, \eta_{n-2}} c\left(\eta_{0}, \cdots, \eta_{n-2}, \epsilon_{n-1}\right) . \tag{9}
\end{equation*}
$$

In other words, such a matrix does not touch the last digit $\epsilon_{n-1}$. This argument applies in particular to the middle matrix in eq. (3) that is $F_{n-1} \oplus F_{n-1}$.
(b) Applying a second time eq. (3) to each of the two $F_{n-1}$ 's appearing above gives a decomposition of the form

$$
\begin{align*}
& \left.F_{n}=\left[\begin{array}{cc}
\mathbf{1}_{2^{n-1}} & D_{n} \\
\mathbf{1}_{2^{n-1}} & -D_{n}
\end{array}\right] \cdot\left[\begin{array}{cc}
{\left[\begin{array}{cc}
\mathbf{1}_{2^{n-2}} & D_{n-1} \\
\mathbf{1}_{2^{n-2}} & -D_{n-1}
\end{array}\right]} & 0 \\
0
\end{array} \begin{array}{cc}
\mathbf{1}_{2^{n-2}} & D_{n-1} \\
\mathbf{1}_{2^{n-2}} & -D_{n-1}
\end{array}\right]\right] \cdots \\
& \cdots\left[\begin{array}{cccc}
F_{n-2} & 0 & 0 & 0 \\
0 & F_{n-2} & 0 & 0 \\
0 & 0 & F_{n-2} & 0 \\
0 & 0 & 0 & F_{n-2}
\end{array}\right] \cdot\left[\begin{array}{cc}
{\left[P_{n-1}\right]} & 0 \\
0 & {\left[P_{n-1}\right]}
\end{array}\right] \cdot\left[P_{n}\right], \tag{10}
\end{align*}
$$

Hence, iterating $j$-times eq. (3) will give, in the middle, the direct sum of $2^{j}$ terms $F_{n-j} \oplus \cdots \oplus F_{n-j}$.
(c) Using the argument above, such a matrix does not modify the last $j$-digits of the coordinates namely the $\epsilon_{n-j}, \cdots, \epsilon_{n-1}$.
7. (a) Since $\tilde{P}_{n-1}$ has the structure of the $A$-matrice (8), it does not affect the last digit. Moreover, it acts as $P_{n-1}$ on the previous digits, so that (see eq. (7))

$$
\begin{equation*}
\left(\tilde{P}_{n-1}|c\rangle\right)\left(\epsilon_{0}, \cdots, \epsilon_{n-2}, \epsilon_{n-1}\right)=(|c\rangle)\left(\epsilon_{n-2}, \epsilon_{0}, \cdots, \epsilon_{n-3}, \epsilon_{n-1}\right) . \tag{11}
\end{equation*}
$$

Similarly $\tilde{P}_{n-2}$ does no modify $\epsilon_{n-2}, \epsilon_{n-1}$ and acts like $P_{n-2}$ on the first ( $n-2$ )-digits, so that

$$
\begin{equation*}
\left(\tilde{P}_{n-2}|c\rangle\right)\left(\epsilon_{0}, \cdots, \epsilon_{n-2}, \epsilon_{n-1}\right)=(|c\rangle)\left(\epsilon_{n-3}, \epsilon_{0}, \cdots, \epsilon_{n-4}, \epsilon_{n-2}, \epsilon_{n-1}\right) \tag{12}
\end{equation*}
$$

(b) More generally, the same argument leads to

$$
\begin{equation*}
\tilde{P}_{n-j}|c\rangle\left(\epsilon_{0}, \cdots, \epsilon_{n-j-1}, \epsilon_{n-j}, \cdots, \epsilon_{n-1}\right)=|c\rangle\left(\epsilon_{n-j-1}, \epsilon_{0}, \cdots, \epsilon_{n-j-2}, \epsilon_{n-j}, \cdots, \epsilon_{n-1}\right) . \tag{13}
\end{equation*}
$$

(c) Thanks to (13), if $\hat{P}_{k}=\tilde{P}_{n-k+2} \cdots \tilde{P}_{n}$, an iteration leads to

$$
\begin{aligned}
\hat{P}_{n}|c\rangle\left(\epsilon_{0}, \cdots, \epsilon_{n-1}\right) & =\hat{P}_{n-1}|c\rangle\left(\epsilon_{1}, \epsilon_{0}, \epsilon_{2}, \cdots, \epsilon_{n-1}\right) \\
& =\hat{P}_{n-2}|c\rangle\left(\epsilon_{2}, \epsilon_{1}, \epsilon_{0}, \epsilon_{3}, \cdots, \epsilon_{n-1}\right) \\
& =\cdots \\
& =|c\rangle\left(\epsilon_{n-1}, \epsilon_{n-2}, \cdots \epsilon_{1}, \epsilon_{0}\right) .
\end{aligned}
$$

8. (a) Thanks to (5), the matrix elements of $F_{1}$ are given by $\left(F_{1}\right)_{\epsilon}^{\eta}=(-1)^{\epsilon \eta}$ with $\epsilon, \eta \in$ $\{0,1\}$. Moreover, the first step consists in applying $\tilde{F}_{1}=F_{1} \oplus \cdots \oplus F_{1}\left(2^{n-1}\right.$ factors $)$. Thanks to 6.(c), it does not affect the digits $\epsilon_{1}, \cdots, \epsilon_{n-1}$. Therefore, if $\tilde{F}_{1}\left|y_{0}\right\rangle=\left|y_{1}\right\rangle$

$$
\begin{aligned}
y_{1}\left(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n-1}\right) & =\sum_{\eta=0}^{1}(-1)^{\eta \epsilon_{0}} y_{0}\left(\eta, \epsilon_{1}, \cdots, \epsilon_{n-1}\right) \\
& =y_{0}\left(0, \epsilon_{1}, \cdots, \epsilon_{n-1}\right)+(-1)^{\epsilon_{1}} y_{0}\left(1, \epsilon_{1}, \cdots, \epsilon_{n-1}\right)
\end{aligned}
$$

(b) Let $\tilde{D}_{n-j}$ denote the direct sum $\mathcal{D}_{n-j} \oplus \cdots \oplus \mathcal{D}_{n-j}\left(2^{j}\right.$ terms $)$ where

$$
\mathcal{D}_{n-j}=\left[\begin{array}{cc}
\mathbf{1}_{2^{n-j-1}} & D_{n-j} \\
\mathbf{1}_{2^{n-j-1}} & -D_{n-j}
\end{array}\right]
$$

Then $\tilde{D}_{1}=\tilde{F}_{1}$ and the same argument applied to $\left|y_{k}\right\rangle=\tilde{D}_{k} \tilde{D}_{k-1} \cdots \tilde{D}_{1}\left|y_{0}\right\rangle$ gives

$$
y_{k+1}\left(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n-1}\right)=\sum_{\eta=0,1} e^{\frac{22 \pi \eta\left(\epsilon_{0}+2 \epsilon_{1}+\cdots+2^{k} \epsilon_{k}\right)}{2^{k+1}}} y_{k}\left(\epsilon_{0}, \cdots, \epsilon_{k-1}, \eta, \epsilon_{k+1}, \cdots, \epsilon_{n-1}\right)
$$

since $D_{n}$ is diagonal (see 4.).
(c) Starting from $|c\rangle$, which contains $N=2^{n}$ complex numbers, $\left|y_{0}\right\rangle$ consists simply in relabeling the initial datas. For each set of $n$-digits $\underline{\epsilon}=\left(\epsilon_{0}, \cdots, \epsilon_{n-1}\right),\left|y_{k+1}\right\rangle$ is obtained from $\left|y_{k}\right\rangle$ by applying one multiplication by an exponential factor and one addition. Thus for each components of $\left|y_{n}\right\rangle$ requires $n$ multiplications and $n$ additions and $n$ exponential factors. Since there are $N=2^{n}$ such components, the computation of the Fourier transform of $|c\rangle$ requires $3 n N=3 N \ln _{2} N$ operations.
A direct application of matrix multiplication, with the matrix of the Fourier transform, requires for each component, $N$ exponential factors, $N$ multiplications and $N$ additions. Thus it gives $3 N^{2}$ operations instead, namely $N / \ln _{2} N$ times the number required in the FFT. For $n=20, N=2^{20}=1024^{2}=1.05 \times 10^{6}$. Thus the $F F T$ will require $N / \ln _{2} N=5 \times 10^{4}$ less computer time than the ordinary method!

