Georgia Tech

QUANTUM INFORMATION & QUANTUM COMPUTING

Problems Set 2

Due March 2nd, 2006

- 1. Read carefully Nielsen-Chang, Section 5.
- 2. Read carefully Box 5.2.
- 3. Turn in exercises (to be graded) # 5.4, 5.5, 5.8, 5.10, 5.11, 5.12, 5.13.

Exercises :

- 5.4- Give a decomposition of the controlled- R_k gate into single qubit and CNOT gates.. Use the circuit shown in Nielsen-Chang, Section 4, Figure 4.6. It is enough to use three single qubit gates, namely $C = R_{k+1}^{-1}$, $B = R_{k+1}$, A = I, $\alpha = 2\pi/2^{k+1}$.
- 5.5- Give a quantum circuit to compute the inverse Fourier transform.
 It is enough to take the circuit for the direct Fourier transform and just change the input into the output and vice-versa.
- 5.8- Suppose the phase estimation algorithm takes state $|0\rangle|u\rangle$ to the state $|\tilde{\varphi}_u\rangle|u\rangle$, so that given the input $|0\rangle \sum_u c_u|u\rangle$, the algorithm gives the outputs $\sum_u c_u|\tilde{\varphi}_u\rangle|u\rangle$. Show that if t is chosen according to (5.35), then the probability for measuring $\tilde{\varphi}_u$ accurate to n bits at the conclusion of the phase estimation algorithm is at least $|c_u|^2(1-\epsilon)$.

From the reasoning found in Section 5.2.1, if the input is $|0\rangle|u\rangle$ the probability to obtain successfully φ accurate to n bits is at least $(1-\epsilon)$ if t is chosen according to (5.35), namely if $t \ge n+\ln(2+1/2\epsilon)$. On the other hand, if the input is now $|0\rangle \sum_{u} c_{u}|u\rangle$ instead, then the probability that it is given by $|0\rangle|u\rangle$ is exactly $|c_{u}|^{2}$ (this is one of the axiom of Quantum Mechanics). This later event is independent from the former, so that the probability for measuring $\tilde{\varphi_{u}}$ accurate to n bits at the conclusion of the phase estimation algorithm is the product of the two, namely it is at least $|c_{u}|^{2}(1-\epsilon)$.

- 5.10- Show that the order of x = 5 modulo N = 21 is 6.

The order of x is the smallest positive integer r such that $x^r = 1 \pmod{N}$. It is enough then to compute the successive powers of $x \pmod{N}$ until 1 is obtained. If N = 21 and x = 5 this gives for instance $x^2 = 5 \times 5 = 25 = 25 - 21 \pmod{21} = 4$, therefore $x^3 = 5 \times 4 = 20 = 20 - 21 = -1 \mod 21$. Proceeding in this way this gives

$$x = 5$$
 $x^2 = 4$ $x^3 = -1$ $x^4 = -5$ $x^5 = -4$ $x^6 = 1$

Consequently r = 6.

- 5.11- Show that the order of x satisfies $r \leq N$. (Here x has no common divisor with N.) The sequence $\{1, x, x^2, \dots, x^n, \dots, x^N\}$ computed modulo N contains N+1 elements. But there are at most N integers modulo N, so that at least two of these elements are equal modulo N. Namely there are $0 \leq m < n \leq N$ such that $x^m = x^n \mod N$. Since x has no common divisors with N, it follows that x is invertible modulo N, so that, dividing by x^m (modulo N) gives $1 = x^{n-m}$. It follows that $r \leq n - m \leq N$ (since n - m > 0).

Remark : the same proof actually shows that, whenever $x \neq 1$ then 1 < r < N. For indeed in the list above, 0 never appears because x is invertible modulo N. Therefore the list contains at most N-1 distinct elements. Restricting the list to $\{1, x, x^2, \dots, x^n, \dots, x^{N-1}\}$ gives N elements with at most N-1 of them distincts. Thus, using the previous argument, $r \leq N-1$. On the other hand $r \neq 1$ unless x = 1 which has been excluded.

- 5.12- Show that the operator U defined below is unitary (Hint : x is co-prime to N, and therefore has an inverse modulo N).

$$U|y\rangle = |xy(\text{mod}N)\rangle$$
 if $0 \le y \le N-1$, $U|y\rangle = |y\rangle$ otherwise. (1)

where $0 \leq y < 2^{L}$ if L is the smallest positive integer such that $N \leq 2^{L}$.

First, it should be remarked that all numbers in the list $\{xy \pmod{N}; 0 \le y < N\}$ are contained between 0 and N-1, by definition. On the other hand, the adjoint U^{\dagger} of U is defined such that $\langle y|U^{\dagger}|y'\rangle = (U|y\rangle, |y'\rangle)$. Thus if $0 \le y < N$ the *r.h.s.* is given by $\langle xy \pmod{N}|y'\rangle$, whereas if $N \le y < 2^L$, it is given by $\langle y|y'\rangle$.

In the former case, this inner product vanishes unless $y' = xy \pmod{N}$, namely unless $0 \le y' < N$ and $y = x^{-1}y' \pmod{N}$, in which case, it is equal to 1. Therefore $0 \le y' < N \Rightarrow U^{\dagger}|y'\rangle = |x^{-1}y' \pmod{N}\rangle$.

In the latter case the inner product vanishes unless y = y', implying that $y' \ge N$. Thus $N \le y' < 2^L \Rightarrow U^{\dagger} |y'\rangle = |y' \pmod{N}\rangle$.

The previous result shows that $UU^{\dagger}|y'\rangle = U|x^{-1}y' \pmod{N} = |xx^{-1}y' \pmod{N} = |y'\rangle$ for y' < N, while $UU^{\dagger}|y'\rangle = U|y'\rangle = |y'\rangle$ if $N \le y' < 2^L$. Since the family $\{|y'\rangle; 0 \le y' < 2^L\}$ is an orthonormal basis in the Hilbert space of computer states, it follows that $UU^{\dagger} = I$. Therefore U^{\dagger} is the inverse of U, namely U is unitary.

- 5.13- Prove the equation (5.44). (Hint : $\sum_{s=0}^{r-1} \exp\left(-2i\pi sk/r\right) = r\delta_{k0.}$) In fact prove that

$$\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} e^{2i\pi sk/r} |u_s\rangle = |x^k \mod N\rangle.$$
(2)

Reminder : The operator U defined in eq. (1) above satisfies $U^r = I$. For indeed, for y < N then $U^r |y\rangle = U^{r-1} |xy \pmod{N}\rangle = \cdots = |x^r y \pmod{N}\rangle = |y\rangle$ since, by definition of the order, $x^r = 1 \pmod{N}$. Hence if λ is an eigenvalue of U, then $\lambda^r = 1$. Therefore, there is $s \in [0, r)$ such that $\lambda = \lambda_s = e^{2i\pi s/r}$.

Moreover, by definition of the order, the sequence $\{1, x, \dots, x^n, \dots, x^{r-1}\}$ of integers modulo N contains exactly r distinct elements. Hence the vectors $|1\rangle, |x\rangle, \dots, |x^n \pmod{N}\rangle, \dots, |x^{r-1} \pmod{N}\rangle$ are orthonormal and make up an orthonormal basis of the subspace \mathcal{H}_0 they generated. In addition applying U to any of these vectors gives the next one $U|x^n \pmod{N}\rangle = |x^{n+1} \pmod{N}\rangle$. Thus \mathcal{H}_0 is invariant by U. Then $|u_s\rangle$ is defined as follows Math 4782, Phys 4782, CS4803, February 9, 2006

$$|u_s\rangle = \frac{1}{\sqrt{r}} \sum_{n=0}^{r-1} e^{-2i\pi s n/r} |x^n \pmod{N}\rangle.$$
 (3)

Applying U to this vector gives

$$U|u_s\rangle = \frac{1}{\sqrt{r}} \sum_{n=0}^{r-1} e^{-2i\pi s n/r} |x^{n+1} (\mathrm{mod}N)\rangle.$$

The sequence $\{x, \dots, x^{n+1}, \dots, x^r = 1\}$ is the same as $\{1, x, \dots, x^n, \dots, x^{r-1}\}$ up to a circular permutation. So changing n into n-1 gives

$$U|u_s\rangle = \frac{1}{\sqrt{r}} \sum_{n=0}^{r-1} e^{-2i\pi s(n-1)/r} |x^n \pmod{N}\rangle,$$

because $e^{-2i\pi s(-1)/r} = e^{-2i\pi s(r-1)/r}$. But then, it is possible to factorize $e^{-2i\pi s(-1)/r} = e^{2i\pi s/r} = \lambda_s$ to get

$$U|u_s\rangle = \lambda_s |u_s\rangle \,.$$

Thus $|u_s\rangle$ is an eigenvector of U for the eigenvalue λ_s , provided it is nonzero. Since the $|x^n \pmod{N}\rangle$'s make up an orthonormal basis, the square of the norm of $|u_s\rangle$ is the sum of the square of its components namely

$$\langle u_s | u_s \rangle = \frac{1}{r} \sum_{n=0}^{r-1} |e^{-2i\pi s(n-1)/r}|^2 = \frac{1}{r} \sum_{n=0}^{r-1} 1 = 1.$$

In much the same way, the inner product of two of such vectors vanishes. This can be seen in two ways : (i) First argument : since $U|u_s\rangle = \lambda_s |u_s\rangle$ then $\lambda_t \langle u_s | u_t \rangle = \langle u_s | U | u_t \rangle = (U^{\dagger} | u_s \rangle, |u_t \rangle) = (\overline{\lambda_s} | u_s \rangle, |u_t \rangle) = \lambda_s \langle u_s | u_t \rangle$. But if $s \neq t$ then $\lambda_s \neq \lambda_t$ so that the only possibility is $\langle u_s | u_t \rangle = 0$.

(ii) Second argument : the inner product $\langle u_s | u_t \rangle$ can be computed directly using the hint above

$$\langle u_s | u_t \rangle = \frac{1}{r} \sum_{n=0}^{r-1} e^{-2i\pi(t-s)n/r} = \delta_{s,t} = 0 \quad \text{if} \quad s \neq t.$$

Hence, the family $\{|u_s\rangle; 0 \le s \le r-1\}$ is an orthonormal basis of \mathcal{H}_0 as well.

Solution of 5.13 : The eq. (5,44) is

$$\frac{1}{\sqrt{r}}\sum_{s=0}^{r-1}|u_s\rangle = |1\rangle$$

Actually, it is a consequence of eq. (2) for k = 0. Thus it is sufficient to prove eq. (2). Using the definition (3) of $|u_s\rangle$ gives

$$\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} e^{2i\pi sk/r} |u_s\rangle = \frac{1}{r} \sum_{s=0}^{r-1} \sum_{n=0}^{r-1} e^{2i\pi s(k-n)/r} |x^n \mod N\rangle.$$

Exchanging the order of the two sums, gives $\sum_{s=0}^{r-1} e^{2i\pi s(k-n)/r} = r\delta_{k,n}$ thanks to the *hint* above. Therefore, since $\delta_{k,n} = 0$ for $n \neq k$ and 1 if n = k,

$$\frac{1}{\sqrt{r}}\sum_{s=0}^{r-1}e^{2i\pi sk/r}|u_s\rangle = \sum_{n=0}^{r-1}\delta_{k,n}|x^n \mod N\rangle = |x^k \mod N\rangle.$$