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Math 4782, Phys 4782, CS4803

Quantum Information & Quantum Computing

Problems Set 2

Due March 2nd, 2006

1. Read carefully Nielsen-Chang, Section 5 .

2. Read carefully Box 5.2 .

3. Turn in exercises (to be graded) # 5.4, 5.5, 5.8, 5.10, 5.11, 5.12, 5.13 .

Exercises :

– 5.4- Give a decomposition of the controlled-Rk gate into single qubit and cnot gates..

Use the circuit shown in Nielsen-Chang, Section 4, Figure 4.6 . It is enough to use three
single qubit gates, namely C = R−1

k+1 , B = Rk+1 , A = I , α = 2π/2k+1.

– 5.5- Give a quantum circuit to compute the inverse Fourier transform.

It is enough to take the circuit for the direct Fourier transform and just change the input
into the output and vice-versa.

– 5.8- Suppose the phase estimation algorithm takes state |0〉|u〉 to the state |ϕ̃u〉|u〉, so that
given the input |0〉

∑
u cu|u〉, the algorithm gives the outputs

∑
u cu|ϕ̃u〉|u〉. Show that if t

is chosen according to (5.35), then the probability for measuring ϕ̃u accurate to n bits at
the conclusion of the phase estimation algorithm is at least |cu|2(1 − ε).

From the reasoning found in Section 5.2.1, if the input is |0〉|u〉 the probability to obtain
successfully ϕ accurate to n bits is at least (1−ε) if t is chosen according to (5.35), namely
if t ≥ n+ln (2 + 1/2ε). On the other hand, if the input is now |0〉 ∑

u cu|u〉 instead, then the
probability that it is given by |0〉|u〉 is exactly |cu|2 (this is one of the axiom of Quantum
Mechanics). This later event is independent from the former, so that the probability for
measuring ϕ̃u accurate to n bits at the conclusion of the phase estimation algorithm is the
product of the two, namely it is at least |cu|2(1 − ε).

– 5.10- Show that the order of x = 5 modulo N = 21 is 6.

The order of x is the smallest positive integer r such that xr = 1 (modN). It is enough
then to compute the successive powers of x (modN) until 1 is obtained. If N = 21 and
x = 5 this gives for instance x2 = 5 × 5 = 25 = 25 − 21 (mod 21) = 4, therefore x3 =
5 × 4 = 20 = 20 − 21 = −1 modulo 21. Proceeding in this way this gives

x = 5 x2 = 4 x3 = −1 x4 = −5 x5 = −4 x6 = 1 .

Consequently r = 6.
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– 5.11- Show that the order of x satisfies r ≤ N . (Here x has no common divisor with N .)

The sequence {1, x, x2, · · · , xn, · · · , xN} computed modulo N contains N +1 elements. But
there are at most N integers modulo N , so that at least two of these elements are equal
modulo N . Namely there are 0 ≤ m < n ≤ N such that xm = xn mod N . Since x has no
common divisors with N , it follows that x is invertible modulo N , so that, dividing by xm

(modulo N) gives 1 = xn−m. It follows that r ≤ n − m ≤ N (since n − m > 0).

Remark : the same proof actually shows that, whenever x 6= 1 then 1 < r < N . For
indeed in the list above, 0 never appears because x is invertible modulo N . Therefore the list
contains at most N−1 distinct elements. Restricting the list to {1, x, x2, · · · , xn, · · · , xN−1}
gives N elements with at most N−1 of them distincts. Thus, using the previous argument,
r ≤ N − 1. On the other hand r 6= 1 unless x = 1 which has been excluded. 2

– 5.12- Show that the operator U defined below is unitary (Hint : x is co-prime to N , and
therefore has an inverse modulo N).

U |y〉 = |xy(modN)〉 if 0 ≤ y ≤ N − 1 , U |y〉 = |y〉 otherwise. (1)

where 0 ≤ y < 2L if L is the smallest positive integer such that N ≤ 2L.

First, it should be remarked that all numbers in the list {xy (modN) ; 0 ≤ y < N} are
contained between 0 and N − 1, by definition. On the other hand, the adjoint U † of U
is defined such that 〈y|U †|y′〉 = (U |y〉, |y′〉). Thus if 0 ≤ y < N the r.h.s. is given by
〈xy (modN)|y′〉, whereas if N ≤ y < 2L, it is given by 〈y|y′〉.
In the former case, this inner product vanishes unless y ′ = xy (modN), namely unless
0 ≤ y′ < N and y = x−1y′ (modN), in which case, it is equal to 1. Therefore 0 ≤ y ′ <
N ⇒ U †|y′〉 = |x−1y′ (modN)〉.
In the latter case the inner product vanishes unless y = y ′, implying that y′ ≥ N . Thus
N ≤ y′ < 2L ⇒ U †|y′〉 = |y′ (modN)〉.
The previous result shows that UU †|y′〉 = U |x−1y′ (modN)〉 = |xx−1y′ (modN)〉 = |y′〉
for y′ < N , while UU †|y′〉 = U |y′〉 = |y′〉 if N ≤ y′ < 2L. Since the family {|y′〉 ; 0 ≤
y′ < 2L} is an orthonormal basis in the Hilbert space of computer states, it follows that
UU † = I. Therefore U † is the inverse of U , namely U is unitary.

– 5.13- Prove the equation (5.44). (Hint :
∑r−1

s=0 exp (−2ıπsk/r) = rδk0.) In fact prove that

1√
r

r−1∑

s=0

e2ıπsk/r |us〉 = |xk mod N〉 . (2)

Reminder : The operator U defined in eq. (1) above satisfies U r = I. For indeed, for y < N then
Ur|y〉 = Ur−1|xy (modN)〉 = · · · = |xry (modN)〉 = |y〉 since, by definition of the order, xr = 1 (modN).
Hence if λ is an eigenvalue of U , then λr = 1. Therefore, there is s ∈ [0, r) such that λ = λs = e2ıπs/r.

Moreover, by definition of the order, the sequence {1, x, · · · , xn, · · · , xr−1} of integers modulo N contains
exactly r distinct elements. Hence the vectors |1〉, |x〉, · · · , |xn (modN)〉, · · · , |xr−1 (modN)〉 are orthonor-
mal and make up an orthonormal basis of the subspace H0 they generated. In addition applying U to any
of these vectors gives the next one U |xn (modN)〉 = |xn+1 (modN)〉. Thus H0 is invariant by U . Then
|us〉 is defined as follows
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|us〉 =
1√
r

r−1
X

n=0

e
−2ıπsn/r|xn (modN)〉 . (3)

Applying U to this vector gives

U |us〉 =
1√
r

r−1
X

n=0

e
−2ıπsn/r |xn+1 (modN)〉 .

The sequence {x, · · · , xn+1, · · · , xr = 1} is the same as {1, x, · · · , xn, · · · , xr−1} up to a circular permutation.
So changing n into n − 1 gives

U |us〉 =
1√
r

r−1
X

n=0

e
−2ıπs(n−1)/r |xn (modN)〉 ,

because e−2ıπs(−1)/r = e−2ıπs(r−1)/r. But then, it is possible to factorize e−2ıπs(−1)/r = e2ıπs/r = λs to get

U |us〉 = λs|us〉 .

Thus |us〉 is an eigenvector of U for the eigenvalue λs, provided it is nonzero. Since the |xn (modN)〉’s
make up an orthonormal basis, the square of the norm of |us〉 is the sum of the square of its components
namely

〈us|us〉 =
1

r

r−1
X

n=0

|e−2ıπs(n−1)/r |2 =
1

r

r−1
X

n=0

1 = 1 .

In much the same way, the inner product of two of such vectors vanishes. This can be seen in two ways :

(i) First argument : since U |us〉 = λs|us〉 then λt〈us|ut〉 = 〈us|U |ut〉 = (U†|us〉, |ut〉) = (λs|us〉, |ut〉) =
λs〈us|ut〉. But if s 6= t then λs 6= λt so that the only possibility is 〈us|ut〉 = 0.

(ii) Second argument : the inner product 〈us|ut〉 can be computed directly using the hint above

〈us|ut〉 =
1

r

r−1
X

n=0

e
−2ıπ(t−s)n/r = δs,t = 0 if s 6= t .

Hence, the family {|us〉 ; 0 ≤ s ≤ r − 1} is an orthonormal basis of H0 as well. 2

Solution of 5.13 : The eq. (5,44) is

1√
r

r−1∑

s=0

|us〉 = |1〉 .

Actually, it is a consequence of eq. (2) for k = 0. Thus it is sufficient to prove eq. (2).
Using the definition (3) of |us〉 gives

1√
r

r−1∑

s=0

e2ıπsk/r|us〉 =
1

r

r−1∑

s=0

r−1∑

n=0

e2ıπs(k−n)/r|xn mod N〉 .

Exchanging the order of the two sums, gives
∑r−1

s=0 e2ıπs(k−n)/r = rδk,n thanks to the hint
above. Therefore, since δk,n = 0 for n 6= k and 1 if n = k,

1√
r

r−1∑

s=0

e2ıπsk/r|us〉 =
r−1∑

n=0

δk,n|xn mod N〉 = |xk mod N〉 .

2


