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GEORGIA TECH MATH, PHYSICS & COMPUTING
MATH 4782, PHYS 4782, CS4803

QUANTUM INFORMATION & QUANTUM COMPUTING

Problems Set 2
Due March 2nd, 2006

1. Read carefully Nielsen-Chang, Section 5 .
2. Read carefully Box 5.2 .
3. Turn in exercises (to be graded) # 5.4, 5.5, 5.8, 5.10, 5.11, 5.12, 5.13 .

Exercises :
— 5.4- Give a decomposition of the controlled-Ry. gate into single qubit and CNOT gates..

Use the circuit shown in Nielsen-Chang, Section 4, Figure 4.6 . It is enough to use three
single qubit gates, namely C = R,;il ,B=Ryy,A=1, a=2r/2F"

— 5.5- Give a quantum circuit to compute the inverse Fourier transform.

It is enough to take the circuit for the direct Fourier transform and just change the input
into the output and vice-versa.

— 5.8- Suppose the phase estimation algorithm takes state |0)|u) to the state |gy,)|u), so that
giwven the input |0) >, cy|u), the algorithm gives the outputs Y, cyu|fu)|u). Show that if t
is chosen according to (5.35), then the probability for measuring @, accurate to n bits at
the conclusion of the phase estimation algorithm is at least |c,|*(1 — €).

From the reasoning found in Section 5.2.1, if the input is |0)|u) the probability to obtain
successfully ¢ accurate to n bits is at least (1—e¢) if ¢ is chosen according to (5.35), namely
ift > n+In (2 + 1/2¢). On the other hand, if the input is now |0) } . ¢, |u) instead, then the
probability that it is given by |0)|u) is exactly |c,|? (this is one of the axiom of Quantum
Mechanics). This later event is independent from the former, so that the probability for
measuring ¢, accurate to n bits at the conclusion of the phase estimation algorithm is the
product of the two, namely it is at least |c,|?(1 — ).

— 5.10- Show that the order of x =5 modulo N = 21 is 6.

The order of x is the smallest positive integer r such that " = 1 (modN). It is enough
then to compute the successive powers of z (mod/NV) until 1 is obtained. If N = 21 and
x = 5 this gives for instance 22 = 5 x 5 = 25 = 25 — 21 (mod 21) = 4, therefore 23 =
5 x4 =20=20—21 = —1 modulo 21. Proceeding in this way this gives

Consequently r = 6.
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— 5.11- Show that the order of x satisfies r < N. (Here x has no common divisor with N.)

The sequence {1,z,22,---,2",---, 2"} computed modulo N contains N + 1 elements. But

there are at most N integers modulo NN, so that at least two of these elements are equal
modulo N. Namely there are 0 < m < n < N such that 2™ = 2™ mod N. Since x has no
common divisors with IV, it follows that z is invertible modulo NV, so that, dividing by =™
(modulo N) gives 1 = 2"~ It follows that r <n —m < N (since n —m > 0).

Remark : the same proof actually shows that, whenever x # 1 then 1 < r» < N. For
indeed in the list above, 0 never appears because x is invertible modulo V. Therefore the list

contains at most N —1 distinct elements. Restricting the list to {1,z,22,--- 2", - ,a:N_l}
gives N elements with at most N —1 of them distincts. Thus, using the previous argument,
r < N — 1. On the other hand r # 1 unless x = 1 which has been excluded. O

— 5.12- Show that the operator U defined below is unitary (Hint : x is co-prime to N, and
therefore has an inverse modulo N ).

Uly) = [zy(modN))  if 0<y<N-1, Uly) = ly)  otherwise. (1)

where 0 < y < 2L if L is the smallest positive integer such that N < 2L

First, it should be remarked that all numbers in the list {zy (modN); 0 <y < N} are
contained between 0 and N — 1, by definition. On the other hand, the adjoint UT of U
is defined such that (y|UT|y’) = (Uly),|y’)). Thus if 0 < y < N the r.h.s. is given by
(zy (modN)|y'), whereas if N <y < 2L, it is given by (y|y/).

In the former case, this inner product vanishes unless y’ = zy (modN), namely unless
0<% < N and y = 27 'y (modN), in which case, it is equal to 1. Therefore 0 < 3’ <
N = U'ly) = |z~ 'y (modN)).

In the latter case the inner product vanishes unless y = 3/, implying that ¢y’ > N. Thus
N <y <2F = Ully) = |y (modN)).

The previous result shows that UUT|y') = Ulz~1y’ (modN)) = |zz~ 'y’ (modN)) = |y)
for y' < N, while UUTly") = Uly') = |y/) if N <y’ < 2F. Since the family {|y); 0 <
y < 2 } is an orthonormal basis in the Hilbert space of computer states, it follows that
UU' = I. Therefore UT is the inverse of U, namely U is unitary.

— 5.13- Prove the equation (5.44). (Hint : Zg;é exp (—2umsk/r) = rdgg.) In fact prove that

-1
1 T
— Z 2R ug) = |2F mod N . (2)
N
s=0
Reminder : The operator U defined in eq. (1) above satisfies U"™ = I. For indeed, for y < N then
U'ly) = U™ zy (modN)) = -+ = |z"y (mod N)) = |y) since, by definition of the order, 2" = 1 (modN).
Hence if X is an eigenvalue of U, then A" = 1. Therefore, there is s € [0,7) such that A = A\s = e2ms/r,
Moreover, by definition of the order, the sequence {1,z,---,z"™,---,2" '} of integers modulo N contains
exactly 7 distinct elements. Hence the vectors [1), |z),--,|z" (modN)),---,|z" ! (modN)) are orthonor-

mal and make up an orthonormal basis of the subspace Ho they generated. In addition applying U to any
of these vectors gives the next one Ulz™ (modN)) = |2""* (modN)). Thus Ho is invariant by U. Then
|us) is defined as follows
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r—1
1 —uwsn/r| . n
lus) = — e | (modN)) . (3)
\/Fn—()

Applying U to this vector gives

r—1
Ulus) = %Ze*m"/wx”*l (modN)) .
n=0

The sequence {x,---,z" "' ... z" = 1} is the same as {1, x,---,2",---, 2" '} up to a circular permutation.

So changing n into n — 1 gives

r—1
1 —2wrs(n—1)/r| n
Ulus) = —=> e |z™ (modN)),
\/; n=0
because e~ 275(=1/7 — g=2ms(r=1)/7 By then, it is possible to factorize e 27 (~1/7 = ¢27S/T — )\ to get

Ulus) = Aslus) .

Thus |us) is an eigenvector of U for the eigenvalue As, provided it is nonzero. Since the |z™ (modN))’s
make up an orthonormal basis, the square of the norm of |us) is the sum of the square of its components

namely
1 r—1 1 r—1
(uslus) = - Z |67217rs(n71)/7"|2 _ - Z 1= 1.
n=0 n=0

In much the same way, the inner product of two of such vectors vanishes. This can be seen in two ways :

(i) First argument : since Ulus) = As|us) then Ae(us|ue) = (us|Ulue) = (UT|us), |ue)) = Nslus), Jue)) =
As{us|u). But if s # ¢ then As # A so that the only possibility is (us|us) = 0.

(ii) Second argument : the inner product (us|u:) can be computed directly using the hint above

r—1

1 — 41T —s)n/r .
<us|m>:;zoe2 G=om/r — 5., =0 if s#t.
Hence, the family {|us); 0 < s <r — 1} is an orthonormal basis of Ho as well. ad

Solution of 5.13 : The eq. (5,44) is

1 r—1
7 Z lus) = [1).
s=0

Actually, it is a consequence of eq. (2) for & = 0. Thus it is sufficient to prove eq. (2).
Using the definition (3) of |ug) gives

1 r—1 1 r—1r—1
- Ze2z7rsk/r|us> _ = Z Z e2z7rs(k—n)/7"|l,n mod N) .
\/F s=0 " 5=0n=0

Exchanging the order of the two sums, gives Zg;é ezms(h—n)/r — 70k, thanks to the hint
above. Therefore, since 0, = 0 for n # k and 1 if n = k,

r—1 r—1
1
L e2z7rsk/r’u8> _ Zék,n’xn mod N) = ’mk mod N)
\/; s=0 n=0



