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On thermal stability of topologi
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3 Fa
ulty of Applied Physi
s and Mathemati
s, Gda«sk University of Te
hnology, PolandWe analyse stability of the four-dimensional Kitaev model - a 
andidate for s
alable quantummemory - in �nite temperature within the weak 
oupling Markovian limit. It is shown that, belowa 
riti
al temperature, 
ertain topologi
al qubit observables X and Z possess relaxation timesexponentially long in the size of the system. Their 
onstru
tion involves polynomial in system'ssize algorithm whi
h uses as an input the results of measurements performed on all individual spins.We also dis
uss the drawba
ks of su
h 
andidate for quantum memory and mention the impli
ationsof the stability of qubit for statisti
al me
hani
s.I. INTRODUCTIONWhile quantum 
omputation o�ers algorithms whi
h
an outperform the 
lassi
al ones, they are very fragilewith respe
t to external disturban
e. Therefore, alongwith the dis
overies of fast algorithms, the question ofhow to prote
t quantum 
omputation against de
oher-en
e was the subje
t of extensive studies. As a result thewhole domain was 
reated known as fault tolerant quan-tum 
omputation [1℄. The famous threshold theorems[2, 3℄, saying that arbitrary long quantum 
omputationis possible provided the error per gate is below 
ertainthreshold has given the hope, that it is possible in prin-
iple to over
ome the de
oheren
e. However the initialtheorems are based on phenomenologi
al model of noise,and the problem, has not been solved within Hamilto-nian dynami
s [4�7℄. Even the problem of whether one
an store qubits is open.There is, though a 
lass of 
andidates for quantummemories, whi
h are in between realisti
 des
ription andthe phenomenologi
al one: the Kitaev models of topolog-i
al quantum memory [8�10℄. There is a heuristi
 reason-ing, a

ording to whi
h su
h memories are instable in twodimensions [8, 11℄, and stable in four dimensions (simi-larly like Ising model represent a stable 
lassi
al memoryin 2D, but not in 1D) [8℄. Behaviour of of Kitaev mod-els in �nite temperature was then investigated (see e.g.[12�16℄). Quite re
ently the thermal instability of 2Dmodel has been rigorously proved in [17℄. In the presentpaper, we deal with the 4D Kitaev's model of Ref. [8℄and prove rigorously, within Markovian weak 
ouplingapproximation, that the model provides thermally sta-ble qubit. To this end we use the formalism of quantumsemigroup theory [18℄, whi
h has been su

essfully ap-plied to analysis of Kitaev 2D model in Ref. [17℄. As abyprodu
t we obtain a very useful general upper boundfor de
ay rate. We perform our analysis in parallel for3D and 4D 
ase. Indeed, though in 3D 
ase only oneof the qubit observables is stable, as argued in [8℄, it ismu
h more transparent and the reasoning is the sameas in 4D 
ase. Sin
e the very stability of qubit is notsu�
ient for a good quantum memory, we also dis
ussthe open problems 
on
erning existen
e of self-
orre
ting

quantum memory. Impli
ations for des
ription of ther-modynami
al limit are also dis
ussed.The paper is organized as follows. In se
tion II weprovide some basi
 notions and results 
on
erningMarko-vian weak 
oupling limit. We show, in parti
ular, howthe rate of de
ay expressed in terms of noise generatoris related to �delity 
riterion. Finally we provide a gen-eral upper bound for de
ay rate. In se
tion III we showthat analysis of noisy evolution of some parti
ular topo-logi
al observables is redu
ed to the study of a 
lassi
almodel. Next (se
. IV) we provide 
onditions for stabilityof these observables in terms of one-step auto
orrelationfun
tions. In se
. V we �nally prove the stability of theobservables. In se
. VI we provide polynomial algorithmto measure the observables. Finally (se
. VII) we dis
ussremaining open problems for existen
e of self-
orre
tingquantum memory, as well as importan
e of the result fordes
ription of systems in thermodynami
al limit.II. MARKOVIAN APPROXIMATION IN WEAKCOUPLING LIMITLet us �rst we brie�y sket
h the general setup andproperties of Davies generators. A quantum system withdis
rete energy spe
trum is 
oupled to a 
olle
tion of heatbaths leading to the global Hamiltonian
H = Hsys+Hbath+H int with H int =

∑

α

Sα⊗fα,(1)where the Sα are system operators and the fα bath op-erators. The main ingredients are the Fourier transforms
ĥα of the auto
orrelation fun
tions of the fα. The fun
-tion ĥα des
ribes the rate at whi
h the 
oupling is ableto transfer an energy ω from the bath to the system. Of-ten a minimal 
oupling to the bath is 
hosen, minimal inthe sense that the intera
tion part of the Hamiltonian isas simple as possible but still addresses all energy levelsof the system Hamiltonian in order to produ
e �nally anergodi
 redu
ed dynami
s. The ne
essary and su�
ient
ondition for ergodi
ity is [19, 20℄

{

Sα, H
sys

}′
= C1, (2)
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2i.e. no system operator apart from the multiples of theidentity 
ommutes with all the Sα and Hsys.We begin by introdu
ing the Fourier de
ompositions ofthe Sα's as they evolve in time under the system evolution
eitHsys

Sα e−itHsys

=
∑

ω

Sα(ω) e−iωt. (3)Here the ω are the Bohr frequen
ies of the system Hamil-tonian. From self-adjointness we have the relation
Sα(−ω) = Sα(ω)†. (4)The weak 
oupling limit pro
edure then returns the fol-lowing equation for the evolution of the spin system inHeisenberg pi
ture

dX

dt
= i[Hsys, X ] + Ldis(X) =: L(X) (5)

Ldis(X) =
1

2

∑

α

∑

ω

ĥα(ω)
(

S†
α(ω) [X,Sα(ω)]+ (6)

+ [S†
α(ω), X ]Sα(ω)

) (7)For thermal baths one has moreover the relation
ĥα(−ω) = e−βω ĥα(ω) (8)whi
h is a 
onsequen
e of the KMS 
ondition [18℄. Theoperator L generates a semigroup of 
ompletely positiveidentity preserving transformations of the spin system.It des
ribes the redu
ed dynami
s in the Markovian ap-proximation and enjoys the following properties

• The 
anoni
al Gibbs state with density matrix
ρβ =

e−βHsys

Tr
(

e−βHsys

) (9)is a stationary state for the semigroup, i.e.
Tr

(

ρβ etL(X)
)

= Tr
(

ρβ X
)

. (10)
• The semigroup is relaxing, i.e. for any initial state
ρ of the system

lim
t→∞

Tr
(

ρ etL(X)
)

= Tr
(

ρβ X
)

. (11)
• Furthermore, the generator satis�es the detailedbalan
e 
ondition, often 
alled reversibility. Writ-ing δ(X) := [Hsys, X ],

[δ,Ldis] = 0 (12)and
Tr

(

ρβ Y
† Ldis(X)

)

= Tr
(

ρβ

(

Ldis(Y )
)†
X

)

. (13)The last equation expresses the self-adjointness ofthe generator with respe
t to the s
alar produ
t

de�ned by the equilibrium state. The spa
e of ob-servables equipped with the s
alar produ
t
〈X,Y 〉β := Trρβ X

† Y (14)is 
alled the Liouville spa
e and the generator ofthe redu
ed dynami
s is a normal matrix on thatspa
e, i.e. the Hermitian and skew-Hermitian partsof the generator 
ommute.Finally it is known that −L is a positive operator, hen
eit has nonnegative eigenvalues. Moreover L(I) = 0, andfor ergodi
 systems eigenvalue 0 is nondegenerate.A. Auto
orrelation fun
tions, de
ay rate and�delitySuppose that for observable X satisfying 〈X,X〉β = 1
〈X, I〉β = 0 we have

−〈X,L(X)〉β ≤ ǫ. (15)Then the auto
orrelation fun
tion of the observable sat-is�es
〈X, eLtX〉β ≥ e−ǫt (16)One proves it easily, by de
omposing X into normalizedeigenve
tors of L, and using 
onvexity of fun
tion e−x.Thus to show that an observable X is stable, it is enoughto estimate −〈X,L(X)〉, whi
h 
an be therefore 
alledde
ay rate for the observableX . If this quantity de
reasesexponentially with size of the system, we obtain stability.Let us now rephrase it in the language of �delity.Namely, suppose we have observables X and Z satisfy
ommutation rules of Pauli algebra. They generate sub-algebra whi
h de�nes a virtual qubit, the one to be pro-te
ted. Let the indu
ed tensor produ
t on the totalHilbert spa
e be
H = HQ ⊗Hanc. (17)Now, we �x some state ρanc on the system Hanc. Forany state ψ of qubit the initial state of the total systemis ρQ,anc(0) = |ψ〉〈ψ| ⊗ ρanc. Then the system evolvesinto state ρQ,anc(t), and �nally, the an
illa is tra
ed out.Thus the �delity is given by

F (ψ) = 〈ψ|ρout
Q (t)|ψ〉 (18)where

ρout
Q (t) = Tranc(ρQ,anc(t)). (19)Let us denote the �delity averaged uniformly over thestates of qubit by F .Proposition 1 With the above notation, suppose nowthat the Gibbs state is of the form

ρβ =
1

2
IQ ⊗ ρanc, (20)



3where ρanc is a state on an
illa. We then have
F ≥

1

2
(〈X, eLtX〉β + 〈Z, eLtZ〉β) ≥ e−ǫt (21)where ǫ is upper bound for the rates −〈X,L(X)〉β and

−〈Z,L(Z)〉β.Proof. Let Fx be given by
Fx =

1

2
(F (|0〉) + F (|1〉)) (22)where |0〉, |1〉 are eigenstates of X treated as observableon system Q. Similarly we de�ne Fz . Using results of[21℄ and [22℄ one �nds that

F ≥ Fx + Fz − 1 (23)Thus it is enough to estimate e.g. Fx. Using the property(20) and orthogonality X ⊥ I one �nds that
Fx =

1

2
(1 + 〈X, eLtX〉β). (24)Combining the last two formulas with (16) ends the proof.B. Upper bound for de
ay rateWe now present a useful bound for de
ay rate, whi
hholds for operators X whi
h are eigenve
tors of [H, ·].For su
h operators, one 
omputes

− 〈X,L(X)〉β =
∑

ω≥0

ĥ(ω)
(

〈[Sα(ω), X ], [Sα(ω), X ]〉β

+ e−ωβ〈[Sα(−ω), X ], [Sα(−ω), X ]〉β

)

≤ (25)
≤ 2

∑

ω

ĥ(ω)〈[Sα(ω), X ], [Sα(ω), X ]〉β ≤

≤ 2ĥmax

∑

ω

〈[Sα(ω), X ], [Sα(ω), X ]〉β . (26)where
ĥmax = sup

ω≥0
ĥ(ω). (27)Sin
e X and Sα(ω) are eigenve
tors of [H, ·] it followsthat [Sα(ω), X ] are eigenve
tors of [H, ·] too, hen
e theyare mutually orthogonal. We thus 
an write

∑

ω

〈[Sα(ω), X ], [Sα(ω), X ]〉β =
∑

ω,ω′

〈[Sα(ω), X ], [Sα(ω′), X ]〉β.(28)However from de�nition of Sα(ω) it follows that
∑

ω

Sα(ω) = Sα (29)This gives
−〈X,L(X)〉β ≤ 2ĥmax

∑

α

〈[Sα, X ], [Sα, X ]〉β (30)The advantage of the formula is that the only pla
e wherethe self-Hamiltonian appears is the Gibbs state in s
alarprodu
t.

III. FROM QUANTUM TO CLASSICAL INKITAEV-TYPE MODELSWe 
onsider a system of N spin-1/2 systems. For anyset S of spins let us denote XS = Πj∈Sσ
x
j , ZS = Πj∈Sσ

z
j .Consider now Hamiltonian of the form

H = −
∑

s

Xs −
∑

c

Zc (31)and we assume that the sets s and the sets c are 
hosenin su
h a way that the operators Xs and Zc 
ommutewith ea
h other. Consider also the following 
oupling toenvironment
Hint =

∑

j

σx
j ⊗ fj +

∑

j

σz
j ⊗ f̃j. (32)Then Davies operators fall into two types:

aα = σj
xPα (33)

bα = σj
zRα (34)where Pα belong to algebra spanned by those operators

Zc whose support 
ontains the j-th spin and Rα belongsto algebra spanned by operators Xs, whose support 
on-tains j-th spin. (If the spin does not belong to supportof any s, then Pα = I, and similarly for R. However, inKitaev-type models this latter 
ase does not o

ur). Thedissipative generator has the following form
L = Lx + Lz, (35)where Lx,Lz 
onsist of Davies operators of type a and brespe
tively. The Davies operators des
ribe the elemen-tary noise pro
esses. In 2D model, they are 
reation,anihilation and motion of two types of point-like anyons.In 4D model, ex
itations are not point-like, and the pro-
esses are 
reation, anihilation and two types of modi�-
ation of loops (see [8℄, se
. X, and se
s. V, III A of thepresent paper).Consider now observables of the form XS and ZT ,where S, T are some subsets of spins. Let us assumethat XS and ZT 
ommute with all Xs and Zc. Then XS
ommutes with Davies operators of type a and ZT 
om-mutes with Davies operators of type b. Therefore from(7) we get that

L(XS) = Lz(XS), L(ZT ) = Lx(ZT ) (36)Consider now a modi�
ation of the model. Let theHamiltonian be of the form
H = −

∑

s

Xs (37)and the 
oupling with environment be of the form
Hint =

∑

j

σj
z ⊗ f̃j. (38)Then dissipative generator for this model 
onsists ofDavies operators (34) i.e. it is given just by Lz. Weobtain



4Proposition 2 Let Xs = Πj∈sσ
x
j , Zc = Πj∈cσ

z
j wherethe sets s and c are 
hosen in su
h way that Xs and Zc
ommute for all s, c. Consider XS whi
h 
ommutes withall Xs and Zc. Then

L(XS) = L′(XS) (39)where L is dissipative generator 
oming from
H = −

∑

s

Xs−
∑

c

Zc, Hint =
∑

j

σx
j ⊗fj+

∑

j

σz
j ⊗f̃j.(40)and L′ is dissipative generator 
oming from

H ′ = −
∑

s

Xs, H ′
int =

∑

j

σz
j ⊗ f̃j . (41)Moreover

Tr
(

ρβX
†L(X)

)

= Tr
(

ρ′βX
†L′(X)

)

, (42)where ρβ = 1
Z
e−βH and ρ′β = 1

Z′
e−βH′ respe
tively.Analogous result holds for ZT , whi
h 
ommutes with all

Xs and Zc.Remark. Further in text, 〈·, ·〉β will denote s
alarprodu
t with the Gibbs state of type ρ′β (with suitable
H ′, depending whether we talk about X or Z).A. Observables X and Z1. 3D Kitaev modelThe Hamiltonian for 3D Kitaev model is given by [8℄

H = −
∑

s

Xs −
∑

c

Zc (43)where ea
h s denotes set of four plaquettes whi
h share
ommon link, and and ea
h c is six plaquettes forming
ube. We will now de�ne a 
lass of observables of interest.To this end we will use observableXC with C being set ofparallel plaquettes forming a loop that winds around thetorus (there are three homologi
ally inequivalent 
hoi
es,we will 
onsider a �xed one of them). Su
h observable isvery unstable, hen
e we may 
all it "bare qubit observ-able". One needs to "dress" it with another di
hotomi
observable whi
h would store the error syndrome. Thelatter observable will then belong to the abelian algebraspanned by star observables Xs, hen
e depending solelyon atomi
 proje
tors of the algebra whi
h 
orrespond to
on�gurations K of ex
ited links (stars 
an be labeled bythe links - their 
enters). Let us 
all the proje
tors PK.The needed observable will be thus of the form
Fx =

∑

K

λKPK, (44)where λK = ±1. We shall not determine the values of
λK at the moment. They will emerge from our analysis

of stability in se
. V and will be then des
ribed in se
.VI.The full "dressed observable" is the produ
t XCFx.A

ording to Proposition 2 it evolves a

ording to 
las-si
al model with Hamiltonian
HX = −

∑

s

Xs (45)
oupled to environment via operators σz
j . The model isknown as Z2 gauge Ising model (the Ising variables arein our 
ase eigenve
tors of σx

j ) [23℄.One 
an de�ne analogous observable ZPFz. Howeverin 3D there will be no X-Z symmetry. The observable ZPis asso
iated with plane, and atomi
 proje
tor of algebraspanned by Zc is labeled by 
on�gurations of points (i.e.the plaquettes) rather than by loops. Observable ZPFzis evolving a

ording to the model with HZ = −
∑

c Zc
oupled via σx
j . It will not be stable (as pointed out in[8℄) and most likely, one 
an prove it by use of te
hniquesworked out in [17℄.2. 4D Kitaev modelIn four dimensional model the spins again sit on pla-quettes, and the Hamiltonian is similar as in 3D 
ase:

H = −
∑

s

Xs −
∑

c

Zc (46)The only di�eren
e is that the star s has six plaquettes,be
ause there is six plaquettes 
ommon to a single link.Thanks to it there is symmetry: We �x two planes p1 and
p2 on the latti
e and on the dual latti
e, respe
tively, ob-taining bare qubit observables Xp1

and Zp2
. Then 
an-didates for stable observables will be the dressed ones

Xp1
Fx, Zp2

Fz . The latter will again evolve separately,and sin
e 4D latti
e is self-dual, the evolutions are thesame. We arrive at the 4D Z2 gauge Ising model.If we prove that e.g. observable of the form Xp1
Fx isstable, then also similar Zp2

Fz will be stable too, so thatwe will obtain stable qubit.IV. STABILITY CONDITIONS FOR KITAEVMODELA. Bound for de
ay rate for dressed observablesThe bound (30) applied to generator 
onsisting ofDavies generators (33), (34) takes the form
−〈A,L(A)〉β ≤ 2ĥmax

∑

j

〈[σx
j , A], [σx

j , A]〉β +

+
∑

j

〈[σz
j , A], [σz

j , A]〉β . (47)The quantity hmax given by (27) is a 
onstant indepen-dent of the size of the system. This is due to the fa
t that



5Kitaev models exhibits strong lo
ality property, implyingthat there is a 
onstant number of frequen
ies involvedin the generator (e.g. just one positive frequen
y in 2Dmodel) whi
h are independent of the number of spins N .Sin
e the observables Z = ZPFz, X = XCFx (or anal-ogous ones from 4D model) 
ommute with Hamilotnian,the bound is appli
able. We obtain
−〈X,L(X)〉β ≤ 4ĥmax

∑

j

(1 − 〈X,σz
jXσ

z
j 〉β)

−〈Z,L(Z)〉β ≤ 4ĥmax

∑

j

(1 − 〈Z, σx
j Zσ

x
j 〉β) (48)where j runs over all spins. We see that the problem ofde
ay of time auto
orrelation fun
tion has been redu
edto the mu
h simpler problem of "one step" auto
orrela-tion fun
tion.B. Gibbs state is 
on
entrated on 
on�gurationswithout long loopsFirst we will estimate probability that a 
on�gurationhas loop of length l. We shall use the Peierls argumentfollowing Dennis et al. [8℄ and Gri�ths [24℄. To thisend we �rst estimate probability that a �xed loop λ withlength l emerges. Let C be the set of all 
on�gurationswhi
h 
ontain loop λ. The probability is then given by

P (λ) =

∑

K∈C e
−βE(K)

∑

K e
−βE(K)

(49)where in denominator we have sum over all 
on�gura-tions. For any 
on�guration K 
ontaining λ we �ip spinson a 
hosen surfa
e whose boundary is λ, obtaining new
on�guration K∗ whi
h di�ers from K only in that theloop λ is not present anymore. Hen
e E(K) = E(K∗)e−βl(or the quantities here are taken to be dimensionless).Thus we write
P (λ) =

e−βl
∑

K∗∈C e
−βE(K∗)

∑

K e
−βE(K)

(50)Leaving in denominator only 
on�gurations K∗, we 
anonly de
rease it, so that P (λ) ≤ e−βl.Now, the probability P (l) of appearing a 
on�gurationwhi
h has a loop of length l is bounded by the numberof all possible loops of length l times e−βl. A trivialbound for the number of loops in 
ube of linear size L indimension d, that start from a �xed node is 2d(2d− 1)l.This should be multiplied by the number of nodes, whi
his proportional to the volume i.e. polynomial in linearsize L of the system. Finally, we obtain that
P (l) ≤ poly(L)µle−βl = poly(L)e−l(β−lnµ) (51)where µ is a 
onstant depending only on d. Thus below
ertain 
riti
al temperature Tcrit we have

P (l) ≤ poly(L)e−δl (52)

where δ = β − lnµ is positive and does not depend onthe size of the system. We then evaluate probability ofappearing a 
on�guration that has a loop greater than
L′

P (l ≥ L′) ≤ poly(L)

∞
∑

l=L′

e−δl = poly(L)e−δL′ 1

1 − e−δ(53)Thus we see that below Tcrit the probability of obtain-ing e.g. a loop of length L/8 or greater is exponentiallyde
aying in L.C. Stability of Kitaev 4D modelIn next se
tion we shall prove that for 
on�gurationshaving only loops shorter than L′ = L/8 a single �ip doesnot 
hange observables X and Z for Kitaev 4D model.This implies that
∑

j

(1 − 〈Z, σx
j Zσ

x
j 〉β) ≤

∑

j

2P (l ≥ L′) (54)so that
−〈Z,L(Z)〉 ≤ poly(L)e−δ′L (55)where δ′ = δ/8 is a 
onstant that is positive below some
riti
al temperature. The same happens for observable

X , hen
e due to proposition 1 the de
ay time of �delityis exponentially long in size of the system.V. STABILITY OF TOPOLOGICALOBSERVABLESIn previous se
tion we have shown that below 
ertain
riti
al temperature Tcrit the Gibbs state is 
on
entratedon 
on�gurations with short loops. Thus if on su
h 
on-�gurations an observable does not 
hange under singlespin �ip, it is stable within the 
lassi
al model. If in ad-dition it is of the spe
ial form XCFx, then it is also stablewithin the quantum model (see se
tion VC).In this se
tion we shall build su
h observable. To thisend we shall �rst de�ne homology 
lasses of spin 
on-�gurations 
orresponding to 
on�gurations of loops withshort loops only. We will then show that, as expe
ted,single spin �ip does not 
hange those homology 
lasses.This implies that any observable whi
h depends solelyon the homology 
lasses does not 
hange under singlespin �ips (for 
on�gurations 
ontaining only short loops).This result holds for torus of any dimension. Subse-quently we shall show, that some observables of the form
XCFx share this property.



6A. Observables depending only on homology
lassesLet us introdu
e some notation. By S we will denote
on�guration of spins on the latti
e (in the form of 
on-�gurations of bits whose values en
ode spin orientation).Given two spin 
on�gurations S1 and S2, we 
an addthem to obtain new 
on�guration S. We denote it by
S = S1 ⊕ S2, and the addition is bit-wise, modulo 2.I.e. if at given site the spins are the same, resulting spinis down, if they are di�erent, resulting spin is up. Wedenote by S0 
on�guration of all spins down.By K we will denote set of ex
ited links. A link isex
ited, if the parity of spins on adja
ent plaquettes isodd (in 3D a link has four su
h plaquettes, and in 4D �six ones). One �nds that K is sum of disjoint loops lj(the loops 
an have self 
rossing at nodes):Lemma 1 For given 
on�guration K 
onsider a 
on-ne
ted set of links. It is sum of 
losed loops, whi
h visitea
h link and ea
h node at most one time. Equivalently,it is a 
losed walk, whi
h visit one link only at most on
e.Proof. The proof is by indu
tion.We will 
all su
h 
onne
ted sets "loops". We will saythat a loop is short, when its length is no greater than
cL, where c is a �xed 
onstant, whi
h we 
an take e.g.
1/8.Any spin 
on�guration S de�nes link 
on�guration K.We will then write S(K). Of 
ourse for given K there aremany spin 
on�gurations leading to them. Sometimes forgiven S the 
orresponding K will be denoted by ∂S and
alled boundary of S.De�nition 1 By 
ontinuous deformation of spin 
on�g-uration we mean operation, whi
h 
an be 
omposed of thefollowing elementary operations: �ipping spins on all pla-quettes belonging to an elementary d-dimensional 
ubes.Remark 1. Continuous deformation does not 
hangethe 
on�guration of links. For 3D easy to see: indeed,�ipping spins on fa
es of 
ube, 
hange at the same timespins on two plaquettes adja
ent to a link from the 
ube.De�nition 2 We say that S1 and S2 with empty bound-ary are homologi
ally equivalent if they 
an be trans-formed into one another by 
ontinuous deformation. Sis 
alled homologi
ally trivial, if it 
an be 
ontinuouslytransformed into S0.De�nition 3 We say that S1 and S2 whi
h have thesame boundary are homologi
ally equivalent and denoteit by S1 ∼ S2, if S1 ⊕ S2 is homolgi
ally trivialDe�nition 4 ("Shortest 
on�guration") Consider given
K =

⋃

j lj . For ea
h loop lj �x a shortest surfa
e whoseboundary is lj. Consider then S∗(lj) whi
h has spins upon this surfa
e and all other spins down. The 
on�gura-tion S∗ = ⊕jS
∗(lj) will be 
alled shortest 
on�gurationfor L.

Fa
t 1 All shortest 
on�gurations S∗ for given K arehomologi
ally equivalent, provided K 
ontains only shortloops.Proof. Take two di�erent shortest 
on�gurations. Wehave
S∗

1 ⊕ S∗
2 = ⊕j [S

∗
1 (lj) ⊕ S∗

2 (lj)] (56)However, ea
h 
on�guration S∗
1 (lj)⊕S

∗
2 (lj) is trivial. In-deed, sin
e loop lj is short then |S∗

1 (lj)| and |S∗
2 (lj)| aresmall, and 
annot form homologi
ally nontrivial surfa
e.De�nition 5 For K 
ontaining only short loops, withany S leading to K we 
an asso
iate the homology 
lassof S ⊕ S∗(K). Denote it by h(S).Remark 2. For �xed K obviously S1 ∼ S2 i� h(S1) =

h(S2). Thus the above de�nition allows to as
ribe labelsto homology 
lasses of spin 
on�guration, by relating todistinguished 
lass i.e. the 
lass of S∗. But the homology
lasses are now de�ned for any K. Thus we will be ableto ask later, whether a spin �ip (whi
h of 
ourse 
hanges
K) 
an preserve homology 
lass. For any K there areeight homology 
lasses in 3D 
ase, asso
iated with threepossible ways of winding around torus. In 4D there is 16
lasses.We have obvious fa
t:Fa
t 2 We have S1 ⊕ S2 = σj(S1) ⊕ σj(S2), where σj�ips j-th spin.Now we will show that for short loops, single spin �ipdoes not 
hange homology 
lass of S. To this end we �rstprove the following lemmaLemma 2 For K 
ontaining only short loops we have

σi(S
∗(K)) ∼ S∗(σi(K)). (57)Here σi(K) is understood as the 
on�guration of loopsarising from 
on�guration K by applying σiProof. Divide K into two sets: K1 
onsisting of loopsthat 
ontain some links from i-th plaquette, and K2whi
h does not 
ontain links from this plaquette. Then

σi(K) = σi(K) ∪ K1 hen
e
σi(S

∗(K)) = σi(S
∗(K1)) ⊕ S∗(K2) (58)and

S∗(σi(K)) = S∗(σi(K1)) ⊕ S∗(K2). (59)Thus only K1 is in the game:
σi(S

∗(K))⊕S∗(σi(K)) = σi(S
∗(K1))⊕S

∗(σi(K1)) (60)and therefore we have to show that right-hand-side ofthe above formula is homologi
ally trivial. Indeed, theset K1 
ontains at most two loops independently of di-mension. Now, sin
e loops are short, both σi(S
∗(K1))and S∗(σi(K1)) are small, and added together must givea trivial surfa
e.Now we are in position to prove the main result of thisse
tion



7Proposition 3 Consider 
on�guration of spins S forwhi
h K has short loops only. Then single spin �ip doesnot 
hange the homology 
lass of S. More expli
itly, wehave
σi(S) ⊕ S∗(σi(K)) ∼ S ⊕ S∗(K) (61)Proof. By lemma 2 we have

σi(S
∗(K)) ∼ S∗(σi(K)). (62)By fa
t 2 we have

σi(S) ⊕ σi(S
∗(K) = S ⊕ S∗(K) (63)Combining the above two equations, we obtain the
laim.Thus any observable T whi
h for 
on�gurations K 
on-taining only short loops depends only on homology 
lass,i.e.

T (S) = T (h) (64)is dynami
ally stable within the model of Proposition 2below some 
riti
al temperature.B. Constru
tion of stable topologi
al observablesOur bare observable will be XT = Πj∈Tσ
j
x where T is
hosen in su
h a way that XT is invariant under �ippingspins on plaquettes from any 
ube (i.e. it is invariant un-der 
ontinuous transformations). Examples of su
h ob-servables exists, as will be shown later in next subse
tion.We will show that one 
an �nd di
hotomi
 observable Fxwhi
h will depend on given 
on�guration S only through

K, su
h that the dressed observable XTFx depends onlyon homology of S (for short loops) i.e. it is stable withinthe 
lassi
al model.We begin with the following lemmaLemma 3 The observable XT whi
h is invariant under�ipping spins on plaquettes of any 
ube is 
onstant onhomology 
lasses for any �xed link 
on�guration K 
on-taining only short loops (
f. de�nition 5).Remark. Note that this does not mean that XT is sta-ble. Indeed, for any �xed link 
on�guration, it is 
on-stant on the whole homology 
lasses. However if the link
on�guration 
hanges, it may 
hange sign on the samehomology 
lass. The stable observable des
ribed in pre-vious subse
tion has the same value on a given homology
lass independently of link 
on�gurations, provided thereare only short loops.Proof. Consider arbitrary spin 
on�gurations S and
S′ whose boundary is K, and whi
h are in the same 
lassof homology, i.e. S1 ≡ S⊕S∗ is homologi
ally equivalentto S2 ≡ S′ ⊕ S∗. Therefore S1 
an be transformed into
S2 by �ipping spins on a set of elementary 
ubes. Thisdoes not 
hange the sign of XT , so that XT has the same

sign on S1 and S2. Thus it has the same sign also on Sand S′.Now we are in position to build stable observable. Nowlet us assume that
XT (S1)XT (S2) = XT (S1 ⊕ S2). (65)We stress here that this assumption is easily seen to holdfor parti
ular observables 
onsidered in next subse
tion.(One 
an a
tually show, that it is true in general forobservables satisfying assumptions of the above lemma).Using this we 
an write

XT (S) = XT (S ⊕ S∗ ⊕ S∗) = XT (S ⊕ S∗)XT (S∗) (66)Sin
e homology 
lass of S∗ is always the same for shortloops (independently on possible amiguity of S∗ for givenloop) then XT (S∗) depends only on the loops 
on�gu-ration: XT (S∗) = X ′′(K), so that XT (S) = XT (S ⊕
S∗)X ′′(K). Now, sin
e for �xed loops 
on�guration XTdepends only on homology 
lass and the loops 
on�gura-tion for S ⊕ S∗ is always null (as S ⊕ S∗ does not havea boundary), we get that XT (S ⊕ S∗) depends only onhomology 
lass of S ⊕ S∗. Therefore, a

ording to def-inition 5, it depends only on homology h of S. Hen
e
XT (S ⊕ S∗) = X ′(h) and we have

XT (S) = X ′(h)X ′′(K). (67)Then the following observable
T (S) = XT (S)X ′′(K) (68)depends only on h. The above observable is de�ned un-ambiguously only for spin 
on�gurations leading to shortloops 
on�gurations. This is be
ause X ′′ is only well de-�ned only on short loops 
on�gurations. We then extendthe de�nition of T to all spin 
on�gurations, by letting

X ′′(K) = 1 for all other loops 
on�gurations. Thus weshall take Fx = X ′′ and obtain that XTFx depends onlyon homology of spin 
on�guration, hen
e is stable within
lassi
al model.C. Observable stable within quantum modelThe observable 
onstru
ted in the previous subse
tionis stable within 
lassi
al model, be
ause it depends onlyon homology 
lass. However, we know that only spe
ialobservables from the 
lassi
al model evolve in the sameway in quantum model. E.g. the observables of the form
XTFx, where Fx is from algebra generated by star op-erators Xs,a and XT 
ommutes with Zc. Here we shallfo
us on 
onstru
tion of XT sin
e it determines Fx via
onsiderations of the previous se
tion.Now, let us note that the �rst 
ondition means simplythat Fx depends only on loops. The se
ond 
onditionmeans that XT does not 
hange under �ips on all pla-quettes of an elementary 
ube. Thus the observable (68)is of the above form, hen
e it evolves in the same way



8both in quantum and 
lassi
al model, hen
e it is stablealso within quantum model.The last thing is to assure that the observable T is non-trivial, i.e it is not identity. To this end we have 
hoosethe set T in a spe
ial way, su
h that on spin 
on�gura-tions without boundary, XT 
an take di�erent sign.For 3D it will be nontrivial loop in dual latti
e, i.e.straight line 
onsisting of parallel plaquettes. The fa
tthat it is loop in dual latti
e, implies that it XT is in-variant under 
ontinuous transformations. Sin
e it isnontrivial, then XT have value −1 for spin 
on�gura-tion 
onsisting of plane of �ipped spins perpendi
ular to
T , while it takes value 1 on homologi
ally trivial spin
on�gurations. Sin
e there are three possible 
hoi
es ofinequivalent nontrivial loops, we 
an 
onstru
t three in-dependent observables.In 4D we take T to be plane in dual latti
e, i.e. thevalue observable XT is de�ned as a produ
t of values ofall plaquettes belonging to the plane T . Again, XT doesnot 
hange under �ipping spins on 
ube be
ause arbitrary
ube has exa
tly two plaquettes in 
ommon with su
h aplane. For this reason it will be also 1 on homologi
allytrivial spin 
on�gurations. However it will take value −1on the 
on�guration 
onsisting of �ipped spins on a plane
T ′ whose interse
tion with T is a single plaquette. Notethat sin
e there are six homologi
ally nontrivial planes,we 
an 
onstru
t six independent observables of this sort.Now, sin
e the torus in 4D is selfdual, we 
an 
onsiderdual observable i.e. Tz = Z ′

TFz , and Fz depends onlyon 
on�guration of three dimensional 
ubes (su
h 
ubesare dual to link). Sin
e Fz and Fx 
ommute, and planes
T and T ′ interse
t only in a single plaquette, we obtainthat Tz and Tx anti
ommute, so that they form a qubit.VI. POLYNOMIAL ALGORITHM FORMEASURING THE TOPOLOGICALOBSERVABLESThe observables are symmetri
, so it is enough to showalgorithm for one of them, say Tz . The algorithm is thefollowing.1. Measure all spins.2. Multiply out
omes on a �xed plane in dual latti
e,this gives "raw value" of the observable.3. Identify the loops.4. For "short" loops we identify asso
iated surfa
es(the ones homologi
ally equivalent to shortestones).5. If an odd number of surfa
es 
rosses a �xed planein dual latti
e, multiply the "raw value" with −1.The step 2 
orresponds to measuring the bare observ-able XT , while the steps 3-5 de�ne observable Fx. Themultipli
ation in last step produ
es the stable, dressed

1

2
3

A) B)

FIG. 1: E�
ient algorithm for determining surfa
e 
losing theloop.observable Tx = XTFx. The only nontrivial problemhere is to argue that the step 4 is polynomial. It is a
-tually enough to show that for a �xed loop, one 
an �nde�
iently a surfa
e whi
h is 
ontained in the smallest
ube 
ontaining the loop.Moreover, it is enough to �nd a proto
ol whi
h in ef-�
ient way allows to �nd spins whi
h, if �ipped, redu
elength of the loop by some amount (in our proto
ol, itwill be redu
ed by two).The proto
ol is the following. We �rst 
hoose a Carte-sian frame. We start with a link of the loop, and movealong the loop. If there is ambiguity (the loop 
rosses it-self) the priority is set by the 
hosen frame: if only we 
anwe go in positive dire
tion of the axis with the smallestnumber. If not, then we go in negative dire
tion of theaxis with the smallest number. The same rule governs
hoi
e of the starting link.The walk is stopped, if we are for
ed at some point togo in opposite dire
tion to any of the previous steps (see�gure).When the walk is stopped, the link at whi
h we stoppedand the last "opposite" link, determine uniquely the setof plaquettes. This is be
ause all the links of the walklying between two "opposite links" are perpendi
ular tothem. Now, after �ipping spins on the set of plaquettes,the two opposite links are removed from the 
urve. Notethat this �ipping may further diminish the length of loop,if by a 
han
e, the 
hose plaquettes have some other links
ommon with the loop. It may also divide the loop intosmaller ones, however their joint length is not longer than
l − 2. VII. CONCLUDING REMARKSWe have shown that within Markovian weak 
ouplingapproximation, there exist a stable quantum subsystemin four dimensional Kitaev model of [8℄. While the qubit



9is indeed stable, there are several other drawba
ks, whi
hmakes the question of existen
e of self 
orre
ting quan-tum memory still open. Minimal requirement for goodquantum memory is that it should allow to en
ode arbi-trary state of qubit (en
oding), then to store it for longtime (storage) and �nally perform a measurement in arbi-trary basis (readout). It would be also good if the mea-surement is repeatable. The present result shows thatstorage is possible, but does not tou
h the problem ofpreparation and measurement. A
tually, the algorithmfor measuring topologi
al observables is highly destru
-tive, hen
e non-repeatable. The en
oding and read-outone usually performs by preparing qubit in a standardstate, and also measure standard observable, the rest be-ing done by gates. Also repeatability 
an be then assured,if one 
an perform 
-not gates on the prote
ted qubits.However the problem with the Kitaev's model is that itdoes not support universal 
omputation. A possible so-lution of this problem is to use the version of topologi
alquantum memory developed by Bombin and Delgado [25℄whi
h supports universal 
omputation (we shall presentthe dynami
al analysis of these models elsewhere). How-

ever, still there is a separate problem of preparation ofthe qubit in standard state.Finally, let us mention, that the present result has sep-arate impli
ations in statisti
al physi
s. In the standardapproa
h to large quantum systems the metastable statesof en
oded qubits like those found for Kitaev models dis-appear in the thermodynami
 limit merging into a 
las-si
al simplex of equilibrium (KMS) states [11℄. On theother hand they 
arry an interesting topologi
al stru
-ture whi
h might be physi
ally relevant. In this 
ontextit is interesting to ask for a new des
ription of in�nite sys-tem, whi
h would take into a

ount su
h new metastablestates. In parti
ular, phase transitions whi
h lead to su
h
urious states require further investigations.A
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