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On thermal stability of topologial qubit in Kitaev's 4D modelR. Aliki1,2, M. Horodeki1,2, P. Horodeki1,3, and R. Horodeki1,2
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3 Faulty of Applied Physis and Mathematis, Gda«sk University of Tehnology, PolandWe analyse stability of the four-dimensional Kitaev model - a andidate for salable quantummemory - in �nite temperature within the weak oupling Markovian limit. It is shown that, belowa ritial temperature, ertain topologial qubit observables X and Z possess relaxation timesexponentially long in the size of the system. Their onstrution involves polynomial in system'ssize algorithm whih uses as an input the results of measurements performed on all individual spins.We also disuss the drawbaks of suh andidate for quantum memory and mention the impliationsof the stability of qubit for statistial mehanis.I. INTRODUCTIONWhile quantum omputation o�ers algorithms whihan outperform the lassial ones, they are very fragilewith respet to external disturbane. Therefore, alongwith the disoveries of fast algorithms, the question ofhow to protet quantum omputation against deoher-ene was the subjet of extensive studies. As a result thewhole domain was reated known as fault tolerant quan-tum omputation [1℄. The famous threshold theorems[2, 3℄, saying that arbitrary long quantum omputationis possible provided the error per gate is below ertainthreshold has given the hope, that it is possible in prin-iple to overome the deoherene. However the initialtheorems are based on phenomenologial model of noise,and the problem, has not been solved within Hamilto-nian dynamis [4�7℄. Even the problem of whether onean store qubits is open.There is, though a lass of andidates for quantummemories, whih are in between realisti desription andthe phenomenologial one: the Kitaev models of topolog-ial quantum memory [8�10℄. There is a heuristi reason-ing, aording to whih suh memories are instable in twodimensions [8, 11℄, and stable in four dimensions (simi-larly like Ising model represent a stable lassial memoryin 2D, but not in 1D) [8℄. Behaviour of of Kitaev mod-els in �nite temperature was then investigated (see e.g.[12�16℄). Quite reently the thermal instability of 2Dmodel has been rigorously proved in [17℄. In the presentpaper, we deal with the 4D Kitaev's model of Ref. [8℄and prove rigorously, within Markovian weak ouplingapproximation, that the model provides thermally sta-ble qubit. To this end we use the formalism of quantumsemigroup theory [18℄, whih has been suessfully ap-plied to analysis of Kitaev 2D model in Ref. [17℄. As abyprodut we obtain a very useful general upper boundfor deay rate. We perform our analysis in parallel for3D and 4D ase. Indeed, though in 3D ase only oneof the qubit observables is stable, as argued in [8℄, it ismuh more transparent and the reasoning is the sameas in 4D ase. Sine the very stability of qubit is notsu�ient for a good quantum memory, we also disussthe open problems onerning existene of self-orreting

quantum memory. Impliations for desription of ther-modynamial limit are also disussed.The paper is organized as follows. In setion II weprovide some basi notions and results onerningMarko-vian weak oupling limit. We show, in partiular, howthe rate of deay expressed in terms of noise generatoris related to �delity riterion. Finally we provide a gen-eral upper bound for deay rate. In setion III we showthat analysis of noisy evolution of some partiular topo-logial observables is redued to the study of a lassialmodel. Next (se. IV) we provide onditions for stabilityof these observables in terms of one-step autoorrelationfuntions. In se. V we �nally prove the stability of theobservables. In se. VI we provide polynomial algorithmto measure the observables. Finally (se. VII) we disussremaining open problems for existene of self-orretingquantum memory, as well as importane of the result fordesription of systems in thermodynamial limit.II. MARKOVIAN APPROXIMATION IN WEAKCOUPLING LIMITLet us �rst we brie�y sketh the general setup andproperties of Davies generators. A quantum system withdisrete energy spetrum is oupled to a olletion of heatbaths leading to the global Hamiltonian
H = Hsys+Hbath+H int with H int =

∑

α

Sα⊗fα,(1)where the Sα are system operators and the fα bath op-erators. The main ingredients are the Fourier transforms
ĥα of the autoorrelation funtions of the fα. The fun-tion ĥα desribes the rate at whih the oupling is ableto transfer an energy ω from the bath to the system. Of-ten a minimal oupling to the bath is hosen, minimal inthe sense that the interation part of the Hamiltonian isas simple as possible but still addresses all energy levelsof the system Hamiltonian in order to produe �nally anergodi redued dynamis. The neessary and su�ientondition for ergodiity is [19, 20℄

{

Sα, H
sys

}′
= C1, (2)
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2i.e. no system operator apart from the multiples of theidentity ommutes with all the Sα and Hsys.We begin by introduing the Fourier deompositions ofthe Sα's as they evolve in time under the system evolution
eitHsys

Sα e−itHsys

=
∑

ω

Sα(ω) e−iωt. (3)Here the ω are the Bohr frequenies of the system Hamil-tonian. From self-adjointness we have the relation
Sα(−ω) = Sα(ω)†. (4)The weak oupling limit proedure then returns the fol-lowing equation for the evolution of the spin system inHeisenberg piture

dX

dt
= i[Hsys, X ] + Ldis(X) =: L(X) (5)

Ldis(X) =
1

2

∑

α

∑

ω

ĥα(ω)
(

S†
α(ω) [X,Sα(ω)]+ (6)

+ [S†
α(ω), X ]Sα(ω)

) (7)For thermal baths one has moreover the relation
ĥα(−ω) = e−βω ĥα(ω) (8)whih is a onsequene of the KMS ondition [18℄. Theoperator L generates a semigroup of ompletely positiveidentity preserving transformations of the spin system.It desribes the redued dynamis in the Markovian ap-proximation and enjoys the following properties

• The anonial Gibbs state with density matrix
ρβ =

e−βHsys

Tr
(

e−βHsys

) (9)is a stationary state for the semigroup, i.e.
Tr

(

ρβ etL(X)
)

= Tr
(

ρβ X
)

. (10)
• The semigroup is relaxing, i.e. for any initial state
ρ of the system

lim
t→∞

Tr
(

ρ etL(X)
)

= Tr
(

ρβ X
)

. (11)
• Furthermore, the generator satis�es the detailedbalane ondition, often alled reversibility. Writ-ing δ(X) := [Hsys, X ],

[δ,Ldis] = 0 (12)and
Tr

(

ρβ Y
† Ldis(X)

)

= Tr
(

ρβ

(

Ldis(Y )
)†
X

)

. (13)The last equation expresses the self-adjointness ofthe generator with respet to the salar produt

de�ned by the equilibrium state. The spae of ob-servables equipped with the salar produt
〈X,Y 〉β := Trρβ X

† Y (14)is alled the Liouville spae and the generator ofthe redued dynamis is a normal matrix on thatspae, i.e. the Hermitian and skew-Hermitian partsof the generator ommute.Finally it is known that −L is a positive operator, heneit has nonnegative eigenvalues. Moreover L(I) = 0, andfor ergodi systems eigenvalue 0 is nondegenerate.A. Autoorrelation funtions, deay rate and�delitySuppose that for observable X satisfying 〈X,X〉β = 1
〈X, I〉β = 0 we have

−〈X,L(X)〉β ≤ ǫ. (15)Then the autoorrelation funtion of the observable sat-is�es
〈X, eLtX〉β ≥ e−ǫt (16)One proves it easily, by deomposing X into normalizedeigenvetors of L, and using onvexity of funtion e−x.Thus to show that an observable X is stable, it is enoughto estimate −〈X,L(X)〉, whih an be therefore alleddeay rate for the observableX . If this quantity dereasesexponentially with size of the system, we obtain stability.Let us now rephrase it in the language of �delity.Namely, suppose we have observables X and Z satisfyommutation rules of Pauli algebra. They generate sub-algebra whih de�nes a virtual qubit, the one to be pro-teted. Let the indued tensor produt on the totalHilbert spae be
H = HQ ⊗Hanc. (17)Now, we �x some state ρanc on the system Hanc. Forany state ψ of qubit the initial state of the total systemis ρQ,anc(0) = |ψ〉〈ψ| ⊗ ρanc. Then the system evolvesinto state ρQ,anc(t), and �nally, the anilla is traed out.Thus the �delity is given by

F (ψ) = 〈ψ|ρout
Q (t)|ψ〉 (18)where

ρout
Q (t) = Tranc(ρQ,anc(t)). (19)Let us denote the �delity averaged uniformly over thestates of qubit by F .Proposition 1 With the above notation, suppose nowthat the Gibbs state is of the form

ρβ =
1

2
IQ ⊗ ρanc, (20)



3where ρanc is a state on anilla. We then have
F ≥

1

2
(〈X, eLtX〉β + 〈Z, eLtZ〉β) ≥ e−ǫt (21)where ǫ is upper bound for the rates −〈X,L(X)〉β and

−〈Z,L(Z)〉β.Proof. Let Fx be given by
Fx =

1

2
(F (|0〉) + F (|1〉)) (22)where |0〉, |1〉 are eigenstates of X treated as observableon system Q. Similarly we de�ne Fz . Using results of[21℄ and [22℄ one �nds that

F ≥ Fx + Fz − 1 (23)Thus it is enough to estimate e.g. Fx. Using the property(20) and orthogonality X ⊥ I one �nds that
Fx =

1

2
(1 + 〈X, eLtX〉β). (24)Combining the last two formulas with (16) ends the proof.B. Upper bound for deay rateWe now present a useful bound for deay rate, whihholds for operators X whih are eigenvetors of [H, ·].For suh operators, one omputes

− 〈X,L(X)〉β =
∑

ω≥0

ĥ(ω)
(

〈[Sα(ω), X ], [Sα(ω), X ]〉β

+ e−ωβ〈[Sα(−ω), X ], [Sα(−ω), X ]〉β

)

≤ (25)
≤ 2

∑

ω

ĥ(ω)〈[Sα(ω), X ], [Sα(ω), X ]〉β ≤

≤ 2ĥmax

∑

ω

〈[Sα(ω), X ], [Sα(ω), X ]〉β . (26)where
ĥmax = sup

ω≥0
ĥ(ω). (27)Sine X and Sα(ω) are eigenvetors of [H, ·] it followsthat [Sα(ω), X ] are eigenvetors of [H, ·] too, hene theyare mutually orthogonal. We thus an write

∑

ω

〈[Sα(ω), X ], [Sα(ω), X ]〉β =
∑

ω,ω′

〈[Sα(ω), X ], [Sα(ω′), X ]〉β.(28)However from de�nition of Sα(ω) it follows that
∑

ω

Sα(ω) = Sα (29)This gives
−〈X,L(X)〉β ≤ 2ĥmax

∑

α

〈[Sα, X ], [Sα, X ]〉β (30)The advantage of the formula is that the only plae wherethe self-Hamiltonian appears is the Gibbs state in salarprodut.

III. FROM QUANTUM TO CLASSICAL INKITAEV-TYPE MODELSWe onsider a system of N spin-1/2 systems. For anyset S of spins let us denote XS = Πj∈Sσ
x
j , ZS = Πj∈Sσ

z
j .Consider now Hamiltonian of the form

H = −
∑

s

Xs −
∑

c

Zc (31)and we assume that the sets s and the sets c are hosenin suh a way that the operators Xs and Zc ommutewith eah other. Consider also the following oupling toenvironment
Hint =

∑

j

σx
j ⊗ fj +

∑

j

σz
j ⊗ f̃j. (32)Then Davies operators fall into two types:

aα = σj
xPα (33)

bα = σj
zRα (34)where Pα belong to algebra spanned by those operators

Zc whose support ontains the j-th spin and Rα belongsto algebra spanned by operators Xs, whose support on-tains j-th spin. (If the spin does not belong to supportof any s, then Pα = I, and similarly for R. However, inKitaev-type models this latter ase does not our). Thedissipative generator has the following form
L = Lx + Lz, (35)where Lx,Lz onsist of Davies operators of type a and brespetively. The Davies operators desribe the elemen-tary noise proesses. In 2D model, they are reation,anihilation and motion of two types of point-like anyons.In 4D model, exitations are not point-like, and the pro-esses are reation, anihilation and two types of modi�-ation of loops (see [8℄, se. X, and ses. V, III A of thepresent paper).Consider now observables of the form XS and ZT ,where S, T are some subsets of spins. Let us assumethat XS and ZT ommute with all Xs and Zc. Then XSommutes with Davies operators of type a and ZT om-mutes with Davies operators of type b. Therefore from(7) we get that

L(XS) = Lz(XS), L(ZT ) = Lx(ZT ) (36)Consider now a modi�ation of the model. Let theHamiltonian be of the form
H = −

∑

s

Xs (37)and the oupling with environment be of the form
Hint =

∑

j

σj
z ⊗ f̃j. (38)Then dissipative generator for this model onsists ofDavies operators (34) i.e. it is given just by Lz. Weobtain



4Proposition 2 Let Xs = Πj∈sσ
x
j , Zc = Πj∈cσ

z
j wherethe sets s and c are hosen in suh way that Xs and Zcommute for all s, c. Consider XS whih ommutes withall Xs and Zc. Then

L(XS) = L′(XS) (39)where L is dissipative generator oming from
H = −

∑

s

Xs−
∑

c

Zc, Hint =
∑

j

σx
j ⊗fj+

∑

j

σz
j ⊗f̃j.(40)and L′ is dissipative generator oming from

H ′ = −
∑

s

Xs, H ′
int =

∑

j

σz
j ⊗ f̃j . (41)Moreover

Tr
(

ρβX
†L(X)

)

= Tr
(

ρ′βX
†L′(X)

)

, (42)where ρβ = 1
Z
e−βH and ρ′β = 1

Z′
e−βH′ respetively.Analogous result holds for ZT , whih ommutes with all

Xs and Zc.Remark. Further in text, 〈·, ·〉β will denote salarprodut with the Gibbs state of type ρ′β (with suitable
H ′, depending whether we talk about X or Z).A. Observables X and Z1. 3D Kitaev modelThe Hamiltonian for 3D Kitaev model is given by [8℄

H = −
∑

s

Xs −
∑

c

Zc (43)where eah s denotes set of four plaquettes whih shareommon link, and and eah c is six plaquettes formingube. We will now de�ne a lass of observables of interest.To this end we will use observableXC with C being set ofparallel plaquettes forming a loop that winds around thetorus (there are three homologially inequivalent hoies,we will onsider a �xed one of them). Suh observable isvery unstable, hene we may all it "bare qubit observ-able". One needs to "dress" it with another dihotomiobservable whih would store the error syndrome. Thelatter observable will then belong to the abelian algebraspanned by star observables Xs, hene depending solelyon atomi projetors of the algebra whih orrespond toon�gurations K of exited links (stars an be labeled bythe links - their enters). Let us all the projetors PK.The needed observable will be thus of the form
Fx =

∑

K

λKPK, (44)where λK = ±1. We shall not determine the values of
λK at the moment. They will emerge from our analysis

of stability in se. V and will be then desribed in se.VI.The full "dressed observable" is the produt XCFx.Aording to Proposition 2 it evolves aording to las-sial model with Hamiltonian
HX = −

∑

s

Xs (45)oupled to environment via operators σz
j . The model isknown as Z2 gauge Ising model (the Ising variables arein our ase eigenvetors of σx

j ) [23℄.One an de�ne analogous observable ZPFz. Howeverin 3D there will be no X-Z symmetry. The observable ZPis assoiated with plane, and atomi projetor of algebraspanned by Zc is labeled by on�gurations of points (i.e.the plaquettes) rather than by loops. Observable ZPFzis evolving aording to the model with HZ = −
∑

c Zcoupled via σx
j . It will not be stable (as pointed out in[8℄) and most likely, one an prove it by use of tehniquesworked out in [17℄.2. 4D Kitaev modelIn four dimensional model the spins again sit on pla-quettes, and the Hamiltonian is similar as in 3D ase:

H = −
∑

s

Xs −
∑

c

Zc (46)The only di�erene is that the star s has six plaquettes,beause there is six plaquettes ommon to a single link.Thanks to it there is symmetry: We �x two planes p1 and
p2 on the lattie and on the dual lattie, respetively, ob-taining bare qubit observables Xp1

and Zp2
. Then an-didates for stable observables will be the dressed ones

Xp1
Fx, Zp2

Fz . The latter will again evolve separately,and sine 4D lattie is self-dual, the evolutions are thesame. We arrive at the 4D Z2 gauge Ising model.If we prove that e.g. observable of the form Xp1
Fx isstable, then also similar Zp2

Fz will be stable too, so thatwe will obtain stable qubit.IV. STABILITY CONDITIONS FOR KITAEVMODELA. Bound for deay rate for dressed observablesThe bound (30) applied to generator onsisting ofDavies generators (33), (34) takes the form
−〈A,L(A)〉β ≤ 2ĥmax

∑

j

〈[σx
j , A], [σx

j , A]〉β +

+
∑

j

〈[σz
j , A], [σz

j , A]〉β . (47)The quantity hmax given by (27) is a onstant indepen-dent of the size of the system. This is due to the fat that



5Kitaev models exhibits strong loality property, implyingthat there is a onstant number of frequenies involvedin the generator (e.g. just one positive frequeny in 2Dmodel) whih are independent of the number of spins N .Sine the observables Z = ZPFz, X = XCFx (or anal-ogous ones from 4D model) ommute with Hamilotnian,the bound is appliable. We obtain
−〈X,L(X)〉β ≤ 4ĥmax

∑

j

(1 − 〈X,σz
jXσ

z
j 〉β)

−〈Z,L(Z)〉β ≤ 4ĥmax

∑

j

(1 − 〈Z, σx
j Zσ

x
j 〉β) (48)where j runs over all spins. We see that the problem ofdeay of time autoorrelation funtion has been reduedto the muh simpler problem of "one step" autoorrela-tion funtion.B. Gibbs state is onentrated on on�gurationswithout long loopsFirst we will estimate probability that a on�gurationhas loop of length l. We shall use the Peierls argumentfollowing Dennis et al. [8℄ and Gri�ths [24℄. To thisend we �rst estimate probability that a �xed loop λ withlength l emerges. Let C be the set of all on�gurationswhih ontain loop λ. The probability is then given by

P (λ) =

∑

K∈C e
−βE(K)

∑

K e
−βE(K)

(49)where in denominator we have sum over all on�gura-tions. For any on�guration K ontaining λ we �ip spinson a hosen surfae whose boundary is λ, obtaining newon�guration K∗ whih di�ers from K only in that theloop λ is not present anymore. Hene E(K) = E(K∗)e−βl(or the quantities here are taken to be dimensionless).Thus we write
P (λ) =

e−βl
∑

K∗∈C e
−βE(K∗)

∑

K e
−βE(K)

(50)Leaving in denominator only on�gurations K∗, we anonly derease it, so that P (λ) ≤ e−βl.Now, the probability P (l) of appearing a on�gurationwhih has a loop of length l is bounded by the numberof all possible loops of length l times e−βl. A trivialbound for the number of loops in ube of linear size L indimension d, that start from a �xed node is 2d(2d− 1)l.This should be multiplied by the number of nodes, whihis proportional to the volume i.e. polynomial in linearsize L of the system. Finally, we obtain that
P (l) ≤ poly(L)µle−βl = poly(L)e−l(β−lnµ) (51)where µ is a onstant depending only on d. Thus belowertain ritial temperature Tcrit we have

P (l) ≤ poly(L)e−δl (52)

where δ = β − lnµ is positive and does not depend onthe size of the system. We then evaluate probability ofappearing a on�guration that has a loop greater than
L′

P (l ≥ L′) ≤ poly(L)

∞
∑

l=L′

e−δl = poly(L)e−δL′ 1

1 − e−δ(53)Thus we see that below Tcrit the probability of obtain-ing e.g. a loop of length L/8 or greater is exponentiallydeaying in L.C. Stability of Kitaev 4D modelIn next setion we shall prove that for on�gurationshaving only loops shorter than L′ = L/8 a single �ip doesnot hange observables X and Z for Kitaev 4D model.This implies that
∑

j

(1 − 〈Z, σx
j Zσ

x
j 〉β) ≤

∑

j

2P (l ≥ L′) (54)so that
−〈Z,L(Z)〉 ≤ poly(L)e−δ′L (55)where δ′ = δ/8 is a onstant that is positive below someritial temperature. The same happens for observable

X , hene due to proposition 1 the deay time of �delityis exponentially long in size of the system.V. STABILITY OF TOPOLOGICALOBSERVABLESIn previous setion we have shown that below ertainritial temperature Tcrit the Gibbs state is onentratedon on�gurations with short loops. Thus if on suh on-�gurations an observable does not hange under singlespin �ip, it is stable within the lassial model. If in ad-dition it is of the speial form XCFx, then it is also stablewithin the quantum model (see setion VC).In this setion we shall build suh observable. To thisend we shall �rst de�ne homology lasses of spin on-�gurations orresponding to on�gurations of loops withshort loops only. We will then show that, as expeted,single spin �ip does not hange those homology lasses.This implies that any observable whih depends solelyon the homology lasses does not hange under singlespin �ips (for on�gurations ontaining only short loops).This result holds for torus of any dimension. Subse-quently we shall show, that some observables of the form
XCFx share this property.



6A. Observables depending only on homologylassesLet us introdue some notation. By S we will denoteon�guration of spins on the lattie (in the form of on-�gurations of bits whose values enode spin orientation).Given two spin on�gurations S1 and S2, we an addthem to obtain new on�guration S. We denote it by
S = S1 ⊕ S2, and the addition is bit-wise, modulo 2.I.e. if at given site the spins are the same, resulting spinis down, if they are di�erent, resulting spin is up. Wedenote by S0 on�guration of all spins down.By K we will denote set of exited links. A link isexited, if the parity of spins on adjaent plaquettes isodd (in 3D a link has four suh plaquettes, and in 4D �six ones). One �nds that K is sum of disjoint loops lj(the loops an have self rossing at nodes):Lemma 1 For given on�guration K onsider a on-neted set of links. It is sum of losed loops, whih visiteah link and eah node at most one time. Equivalently,it is a losed walk, whih visit one link only at most one.Proof. The proof is by indution.We will all suh onneted sets "loops". We will saythat a loop is short, when its length is no greater than
cL, where c is a �xed onstant, whih we an take e.g.
1/8.Any spin on�guration S de�nes link on�guration K.We will then write S(K). Of ourse for given K there aremany spin on�gurations leading to them. Sometimes forgiven S the orresponding K will be denoted by ∂S andalled boundary of S.De�nition 1 By ontinuous deformation of spin on�g-uration we mean operation, whih an be omposed of thefollowing elementary operations: �ipping spins on all pla-quettes belonging to an elementary d-dimensional ubes.Remark 1. Continuous deformation does not hangethe on�guration of links. For 3D easy to see: indeed,�ipping spins on faes of ube, hange at the same timespins on two plaquettes adjaent to a link from the ube.De�nition 2 We say that S1 and S2 with empty bound-ary are homologially equivalent if they an be trans-formed into one another by ontinuous deformation. Sis alled homologially trivial, if it an be ontinuouslytransformed into S0.De�nition 3 We say that S1 and S2 whih have thesame boundary are homologially equivalent and denoteit by S1 ∼ S2, if S1 ⊕ S2 is homolgially trivialDe�nition 4 ("Shortest on�guration") Consider given
K =

⋃

j lj . For eah loop lj �x a shortest surfae whoseboundary is lj. Consider then S∗(lj) whih has spins upon this surfae and all other spins down. The on�gura-tion S∗ = ⊕jS
∗(lj) will be alled shortest on�gurationfor L.

Fat 1 All shortest on�gurations S∗ for given K arehomologially equivalent, provided K ontains only shortloops.Proof. Take two di�erent shortest on�gurations. Wehave
S∗

1 ⊕ S∗
2 = ⊕j [S

∗
1 (lj) ⊕ S∗

2 (lj)] (56)However, eah on�guration S∗
1 (lj)⊕S

∗
2 (lj) is trivial. In-deed, sine loop lj is short then |S∗

1 (lj)| and |S∗
2 (lj)| aresmall, and annot form homologially nontrivial surfae.De�nition 5 For K ontaining only short loops, withany S leading to K we an assoiate the homology lassof S ⊕ S∗(K). Denote it by h(S).Remark 2. For �xed K obviously S1 ∼ S2 i� h(S1) =

h(S2). Thus the above de�nition allows to asribe labelsto homology lasses of spin on�guration, by relating todistinguished lass i.e. the lass of S∗. But the homologylasses are now de�ned for any K. Thus we will be ableto ask later, whether a spin �ip (whih of ourse hanges
K) an preserve homology lass. For any K there areeight homology lasses in 3D ase, assoiated with threepossible ways of winding around torus. In 4D there is 16lasses.We have obvious fat:Fat 2 We have S1 ⊕ S2 = σj(S1) ⊕ σj(S2), where σj�ips j-th spin.Now we will show that for short loops, single spin �ipdoes not hange homology lass of S. To this end we �rstprove the following lemmaLemma 2 For K ontaining only short loops we have

σi(S
∗(K)) ∼ S∗(σi(K)). (57)Here σi(K) is understood as the on�guration of loopsarising from on�guration K by applying σiProof. Divide K into two sets: K1 onsisting of loopsthat ontain some links from i-th plaquette, and K2whih does not ontain links from this plaquette. Then

σi(K) = σi(K) ∪ K1 hene
σi(S

∗(K)) = σi(S
∗(K1)) ⊕ S∗(K2) (58)and

S∗(σi(K)) = S∗(σi(K1)) ⊕ S∗(K2). (59)Thus only K1 is in the game:
σi(S

∗(K))⊕S∗(σi(K)) = σi(S
∗(K1))⊕S

∗(σi(K1)) (60)and therefore we have to show that right-hand-side ofthe above formula is homologially trivial. Indeed, theset K1 ontains at most two loops independently of di-mension. Now, sine loops are short, both σi(S
∗(K1))and S∗(σi(K1)) are small, and added together must givea trivial surfae.Now we are in position to prove the main result of thissetion



7Proposition 3 Consider on�guration of spins S forwhih K has short loops only. Then single spin �ip doesnot hange the homology lass of S. More expliitly, wehave
σi(S) ⊕ S∗(σi(K)) ∼ S ⊕ S∗(K) (61)Proof. By lemma 2 we have

σi(S
∗(K)) ∼ S∗(σi(K)). (62)By fat 2 we have

σi(S) ⊕ σi(S
∗(K) = S ⊕ S∗(K) (63)Combining the above two equations, we obtain thelaim.Thus any observable T whih for on�gurations K on-taining only short loops depends only on homology lass,i.e.

T (S) = T (h) (64)is dynamially stable within the model of Proposition 2below some ritial temperature.B. Constrution of stable topologial observablesOur bare observable will be XT = Πj∈Tσ
j
x where T ishosen in suh a way that XT is invariant under �ippingspins on plaquettes from any ube (i.e. it is invariant un-der ontinuous transformations). Examples of suh ob-servables exists, as will be shown later in next subsetion.We will show that one an �nd dihotomi observable Fxwhih will depend on given on�guration S only through

K, suh that the dressed observable XTFx depends onlyon homology of S (for short loops) i.e. it is stable withinthe lassial model.We begin with the following lemmaLemma 3 The observable XT whih is invariant under�ipping spins on plaquettes of any ube is onstant onhomology lasses for any �xed link on�guration K on-taining only short loops (f. de�nition 5).Remark. Note that this does not mean that XT is sta-ble. Indeed, for any �xed link on�guration, it is on-stant on the whole homology lasses. However if the linkon�guration hanges, it may hange sign on the samehomology lass. The stable observable desribed in pre-vious subsetion has the same value on a given homologylass independently of link on�gurations, provided thereare only short loops.Proof. Consider arbitrary spin on�gurations S and
S′ whose boundary is K, and whih are in the same lassof homology, i.e. S1 ≡ S⊕S∗ is homologially equivalentto S2 ≡ S′ ⊕ S∗. Therefore S1 an be transformed into
S2 by �ipping spins on a set of elementary ubes. Thisdoes not hange the sign of XT , so that XT has the same

sign on S1 and S2. Thus it has the same sign also on Sand S′.Now we are in position to build stable observable. Nowlet us assume that
XT (S1)XT (S2) = XT (S1 ⊕ S2). (65)We stress here that this assumption is easily seen to holdfor partiular observables onsidered in next subsetion.(One an atually show, that it is true in general forobservables satisfying assumptions of the above lemma).Using this we an write

XT (S) = XT (S ⊕ S∗ ⊕ S∗) = XT (S ⊕ S∗)XT (S∗) (66)Sine homology lass of S∗ is always the same for shortloops (independently on possible amiguity of S∗ for givenloop) then XT (S∗) depends only on the loops on�gu-ration: XT (S∗) = X ′′(K), so that XT (S) = XT (S ⊕
S∗)X ′′(K). Now, sine for �xed loops on�guration XTdepends only on homology lass and the loops on�gura-tion for S ⊕ S∗ is always null (as S ⊕ S∗ does not havea boundary), we get that XT (S ⊕ S∗) depends only onhomology lass of S ⊕ S∗. Therefore, aording to def-inition 5, it depends only on homology h of S. Hene
XT (S ⊕ S∗) = X ′(h) and we have

XT (S) = X ′(h)X ′′(K). (67)Then the following observable
T (S) = XT (S)X ′′(K) (68)depends only on h. The above observable is de�ned un-ambiguously only for spin on�gurations leading to shortloops on�gurations. This is beause X ′′ is only well de-�ned only on short loops on�gurations. We then extendthe de�nition of T to all spin on�gurations, by letting

X ′′(K) = 1 for all other loops on�gurations. Thus weshall take Fx = X ′′ and obtain that XTFx depends onlyon homology of spin on�guration, hene is stable withinlassial model.C. Observable stable within quantum modelThe observable onstruted in the previous subsetionis stable within lassial model, beause it depends onlyon homology lass. However, we know that only speialobservables from the lassial model evolve in the sameway in quantum model. E.g. the observables of the form
XTFx, where Fx is from algebra generated by star op-erators Xs,a and XT ommutes with Zc. Here we shallfous on onstrution of XT sine it determines Fx viaonsiderations of the previous setion.Now, let us note that the �rst ondition means simplythat Fx depends only on loops. The seond onditionmeans that XT does not hange under �ips on all pla-quettes of an elementary ube. Thus the observable (68)is of the above form, hene it evolves in the same way



8both in quantum and lassial model, hene it is stablealso within quantum model.The last thing is to assure that the observable T is non-trivial, i.e it is not identity. To this end we have hoosethe set T in a speial way, suh that on spin on�gura-tions without boundary, XT an take di�erent sign.For 3D it will be nontrivial loop in dual lattie, i.e.straight line onsisting of parallel plaquettes. The fatthat it is loop in dual lattie, implies that it XT is in-variant under ontinuous transformations. Sine it isnontrivial, then XT have value −1 for spin on�gura-tion onsisting of plane of �ipped spins perpendiular to
T , while it takes value 1 on homologially trivial spinon�gurations. Sine there are three possible hoies ofinequivalent nontrivial loops, we an onstrut three in-dependent observables.In 4D we take T to be plane in dual lattie, i.e. thevalue observable XT is de�ned as a produt of values ofall plaquettes belonging to the plane T . Again, XT doesnot hange under �ipping spins on ube beause arbitraryube has exatly two plaquettes in ommon with suh aplane. For this reason it will be also 1 on homologiallytrivial spin on�gurations. However it will take value −1on the on�guration onsisting of �ipped spins on a plane
T ′ whose intersetion with T is a single plaquette. Notethat sine there are six homologially nontrivial planes,we an onstrut six independent observables of this sort.Now, sine the torus in 4D is selfdual, we an onsiderdual observable i.e. Tz = Z ′

TFz , and Fz depends onlyon on�guration of three dimensional ubes (suh ubesare dual to link). Sine Fz and Fx ommute, and planes
T and T ′ interset only in a single plaquette, we obtainthat Tz and Tx antiommute, so that they form a qubit.VI. POLYNOMIAL ALGORITHM FORMEASURING THE TOPOLOGICALOBSERVABLESThe observables are symmetri, so it is enough to showalgorithm for one of them, say Tz . The algorithm is thefollowing.1. Measure all spins.2. Multiply outomes on a �xed plane in dual lattie,this gives "raw value" of the observable.3. Identify the loops.4. For "short" loops we identify assoiated surfaes(the ones homologially equivalent to shortestones).5. If an odd number of surfaes rosses a �xed planein dual lattie, multiply the "raw value" with −1.The step 2 orresponds to measuring the bare observ-able XT , while the steps 3-5 de�ne observable Fx. Themultipliation in last step produes the stable, dressed

1

2
3

A) B)

FIG. 1: E�ient algorithm for determining surfae losing theloop.observable Tx = XTFx. The only nontrivial problemhere is to argue that the step 4 is polynomial. It is a-tually enough to show that for a �xed loop, one an �nde�iently a surfae whih is ontained in the smallestube ontaining the loop.Moreover, it is enough to �nd a protool whih in ef-�ient way allows to �nd spins whih, if �ipped, reduelength of the loop by some amount (in our protool, itwill be redued by two).The protool is the following. We �rst hoose a Carte-sian frame. We start with a link of the loop, and movealong the loop. If there is ambiguity (the loop rosses it-self) the priority is set by the hosen frame: if only we anwe go in positive diretion of the axis with the smallestnumber. If not, then we go in negative diretion of theaxis with the smallest number. The same rule governshoie of the starting link.The walk is stopped, if we are fored at some point togo in opposite diretion to any of the previous steps (see�gure).When the walk is stopped, the link at whih we stoppedand the last "opposite" link, determine uniquely the setof plaquettes. This is beause all the links of the walklying between two "opposite links" are perpendiular tothem. Now, after �ipping spins on the set of plaquettes,the two opposite links are removed from the urve. Notethat this �ipping may further diminish the length of loop,if by a hane, the hose plaquettes have some other linksommon with the loop. It may also divide the loop intosmaller ones, however their joint length is not longer than
l − 2. VII. CONCLUDING REMARKSWe have shown that within Markovian weak ouplingapproximation, there exist a stable quantum subsystemin four dimensional Kitaev model of [8℄. While the qubit



9is indeed stable, there are several other drawbaks, whihmakes the question of existene of self orreting quan-tum memory still open. Minimal requirement for goodquantum memory is that it should allow to enode arbi-trary state of qubit (enoding), then to store it for longtime (storage) and �nally perform a measurement in arbi-trary basis (readout). It would be also good if the mea-surement is repeatable. The present result shows thatstorage is possible, but does not touh the problem ofpreparation and measurement. Atually, the algorithmfor measuring topologial observables is highly destru-tive, hene non-repeatable. The enoding and read-outone usually performs by preparing qubit in a standardstate, and also measure standard observable, the rest be-ing done by gates. Also repeatability an be then assured,if one an perform -not gates on the proteted qubits.However the problem with the Kitaev's model is that itdoes not support universal omputation. A possible so-lution of this problem is to use the version of topologialquantum memory developed by Bombin and Delgado [25℄whih supports universal omputation (we shall presentthe dynamial analysis of these models elsewhere). How-
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