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Georgia Tech Math, Physics & Computing
Math 4782, Phys 4782, CS4803

Quantum Information & Quantum Computing

Homework # 2
Due September 18, 2007

1. Read carefully Nielsen-Chang, Section 4.2 & 4.3 .

2. Treat as many exercises in Section 4.3 as possible.

3. Turn in exercises (to be graded) # 4.2, 4.4, 4.5, 4.7, 4.8, 4.9, 4.13, 4.17, 4.18, 4.21, 4.23,
4.24, 4.25, 4.35 .

Exercises :
– 4.2- Let x ∈ R and A be a matrix such that A2 = 1 then show that eıxA = cosxI+ ı sinxA.

2

By definition

eıxA =
∞∑

n=0

(ıxA)n

n!

=
∞∑

n=0

(ıxA)2n

(2n)!
+

∞∑
n=0

(ıxA)2n+1

(2n+ 1)!

=
∞∑

n=0

(−1)nx2n

(2n)!
I + ı

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
A

= cosx I + ı sinx A

– 4.4- Express the Hadamard gate as a product of Rx and Ry rotation and a phase. 2

By definition the matrix of the Hadamard gate in the computer basis is given by

H =
1√
2

[
1 1
1 −1

]
=

X + Z√
2

.

Thanks to (4.2), eıπX/4 = (I+ ıX)/
√

2 and eıπZ/4 = (I+ ıZ)/
√

2 are the Rx, Rz rotations
of angle π/4. Hence

(I + ıX)√
2

(I + ıZ)√
2

(I + ıX)√
2

=
1

2
√

2
(I + ı(X + Z)−XZ) (I + ıX)

=
1

2
√

2
(I + ı(X + Z)−XZ + ıX − I − ZX − ıXZX)

=
ı√
2
(X + Z) = ı H
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where XZ+ZX = 0 ⇒ XZX = −Z have been used. Thus H = e−ıπ/2eıπX/4eıπZ/4eıπX/4.
2

Here n̂ = (nx, ny, nz) ∈ R3 is a vector of length one. Thus

(n̂ · ~σ)2 = (nxX + nyY + nzZ)2

= (n2
x + n2

y + n2
z) I + nxny(XY + Y X) + nynz(Y Z + ZY ) + nznx(ZX +XZ)

= I

since XY + Y X = 0 = Y Z + ZY = ZX +XZ.

– 4.7- Show that XYX = −Y and use it to prove that XRy(θ)X = Ry(−θ). 2

By definition X =
[

0 1
1 0

]
and Y =

[
0 −ı
ı 0

]
. Therefore a direct calculation gives

XY =
[
ı 0
0 −ı

]
, Y X =

[
−ı 0
0 ı

]
= −XY .

Hence XYX = −Y X2 = −Y . Moreover, thanks to (4.2), Ry(θ) = cos θ I + ı sin θ Y so
that indeed

XRy(θ)X = cos θ X2 + ı sin θ XY X = cos θ I − ı sin θ Y = Ry(−θ) .

– 4.8- An arbitrary single qubit unitary operator can be written in the form

U = eıαRn̂(θ) (1)

for some real numbers α, θ and a tridimensional unit vector n̂.

1. Prove this fact.

2. Find values for α, θ and n̂ giving the Hadamard gate H.

3. Find values for α, θ and n̂ giving the phase gate S =
[

1 0
0 ı

]
.

2

If eq. (1) holds, since H = (X + Z)/
√

2, it follows that choosing α = −π/2, θ = π/2 and
n̂ = (1, 0, 1)/

√
2 gives

−ı
{

cosπ/2 + ı sinπ/2
(
X + Z√

2

)}
=

(X + Z)√
2

= H .

In much the same way S is obtained in choosing α = π/4, θ = −π/4 and n̂ = (0, 0, 1)
giving

S = eıπ/4 e−ıπZ/4 .

Let now U be a 2 × 2 unitary matrix and it will be shown that (1) holds. First, detU is
a pure phase. For indeed |detU |2 = detUdetU = detU detU † = detUU † = 1. Therefore
there is α ∈ R such that detU = e2ıα. Hence U = eıαW with W unitary and detW = 1.
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Since W is unitary, it is normal and thus can be diagonalized in an orthonormal basis with
eigenvalues λ±. Unitarity implies that both eigenvalues are pure phases. Since detW =
λ+λ− = 1 there is a real number θ such that λ± = e±ıθ. As a consequence trW = 2 cos θ.
As any 2× 2 matrix, W can be decomposed in a unique way in the Pauli basis namely

W = w0I + wxX + wyY + wzZ , wi ∈ C .

Clearly trW = 2w0 so that w0 = cos θ. Moreover writing wi as ui + ıvi with ui, vi ∈ R (for
i = x, y, z), this gives, with ~u = (ux, uy, uz) and ~v = (vx, vy, vz),

W = cos θ I + ~u · ~σ + ı~v · ~σ , W † = cos θ I + ~u · ~σ − ı~v · ~σ .

By unitarity, it follows that

I = WW † = (cos2 θ + |~u|2 + |~v|2) I + (2 cos θ ~u+ ~u ∧ ~v) · ~σ ,

giving

cos2 θ + |~u|2 + |~v|2 = 1 , 2 cos θ ~u = −~u ∧ ~v .

From the second equation, it follows that 2 cos θ |~u|2 = 0 so that either 2 cos θ = 0 or ~u = 0.
If ~u 6= 0, then ~u and ~v are colinear, and thanks to the l.h.s, |~u|2 + |~v|2 = 1 so that there
is φ ∈ R and a unit vector n̂ such that ~u+ ı~v = eıφn̂. Then, since det n̂~σ = −1 it implies
that φ = π and eq. (1) holds with θ = π/2.
If ~u = 0, then |~v|2 = sin2 θ so that there is a unit vector n̂ such that

W = cos θ I + ı sin θ n̂ · ~σ = Rn̂(θ) .

and eq. (1) also holds.

– 4.9- Explain why a single qubit unitary operator can be written as

U =
[
eı(α−β/2−δ/2) cos γ/2 −eı(α−β/2+δ/2) sin γ/2
eı(α+β/2−δ/2) sin γ/2 eı(α+β/2+δ/2) cos γ/2

]
(2)

2

Any 2× 2 unitary matrix can be written as

U =
[
a b
c d

]
where the two columns makes an orthonormal basis, namely

|a|2 + |c|2 = 1 , |b|2 + |d|2 = 1 , ab+ cd = 0 . (3)

If c = 0 (resp. b = 0) this implies b = 0 (resp. c = 0) and both a, d are pure phases, so that
it is always possible to find (non unique) real numbers α, β, δ such that a = eı(α−β/2−δ/2)

and d = eı(α+β/2+δ/2) and eq. (2) holds. Similarly if a = 0 (resp. d = 0) then d = 0
(resp. a = 0) and it is always possible to find (non unique) real numbers α, β, δ such that
b = −eı(α−β/2+δ/2) and c = eı(α+β/2−δ/2) so that eq. (2) holds again.
Therefore it is possible to assume that none of the cœfficients a, b, c, d vanish. In particular,
there are real numbers 0 < γ, γ′ < π such that |a| = cos γ/2, |c| = sin γ/2, |d| = cos γ′/2
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and |b| = sin γ′/2. In addition, since ab = −cd, it follows that 0 = |a||b| − |c||d| =
sin (γ′ − γ)/2 and therefore γ = γ′ since both belong to (0, π). Thus, there are real numbers
θa, θb, θc, θd such that

a = cos γ/2 eıθa b = − sin γ/2 eıθb

c = sin γ/2 eıθc d = cos γ/2 eıθd

From eq. (3), it follows that θc − θd = θa − θb or equivalently, there is a real number α
such that

θa + θd = θc + θb = 2α .

Therefore it is possible to find real numbers φ and φ′ such that

θa = α− φ θb = α− φ′

θc = α+ φ′ θd = α+ φ

Setting φ+ φ′ = β and φ− φ′ = δ gives eq. (2).

– 4.13- (Circuit identities)It is useful to be able to simplify circuits by inspection, using
well-known identities. Prove the following three identities

HXH = Z , HY H = −Y , HZH = X . (4)

2

By definition, XZ = −ZX, X2 = I = Z2 and ZX = ıY . Moreover the Hadamard operator
can be written as H = (X + Z)/

√
2. These definitions leads to

H† = H , H2 =
X2 +XZ + ZX + Z2

2
= I .

In addition

HXH =
X3 +X2Z + ZX2 + ZXZ

2
=
X + 2Z −X

2
= Z

Consequently, multiplying to the right and to the left by H gives HZH = X, since H2 = I.
At last, Y = −ıZX = ıXZ so that HYH = ıHXHHZH = ıZX = −Y .

– 4.17- (Building cnot from the controlled-Z gate) Construct a cnot gate from one
controlled-Z gate, that is, the gate whose action on the computational basis is specified by
the unitary matrix 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (5)

and the two Hadamard gates, specifying the control and the target qubits. 2
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Fig. 1 – How to construct cnot from the controlled-Z gate

The controlled-Z gate can be described algebraically as C1(Z)|x, y〉 = |x〉 ⊗ Zx|y〉. It
is easy to check that its matrix is given by eq. (5) in the computational basis. Since
X = HZH (see eq. (4)), cnot|x, y〉 = |x〉⊗Xx|y〉 = |x〉⊗(HZH)x|y〉 = |x〉⊗HZxH|y〉 =
I ⊗H · C1(Z) · I ⊗H|x, y〉 giving the result described in Figure 1.

– 4.18- Show that 2

Fig. 2 –

By construction C1(Z)|x, y〉 = |x〉 ⊗ Zx|y〉 = |x〉 ⊗ (−1)xy|y〉 = (−1)xy|x, y〉 = Zy|x〉 ⊗ |y〉
which is exactly what Figure 2 expresses.

– 4.21- Verify that Figure 3 implements the C2(U) operation 2

As can be seen from Figure 3, there are five gates in the circuit of the r.h.s. Therefore the
quantum states describing the computer can be labeled by |ψ0〉, · · · , |ψ5〉 if |ψ0〉 denotes
the input, while |ψs〉 denotes the state after the s-th gate. So that |ψ5〉 is the output. If
the input is given by |ψ0〉 = |x, y, z〉 then

|ψ1〉 = |x〉 ⊗ |y〉 ⊗ V y|z〉
|ψ2〉 = |x〉 ⊗ |y + x〉 ⊗ V y|z〉
|ψ3〉 = |x〉 ⊗ |y + x〉 ⊗ (V †)x+yV y|z〉
|ψ4〉 = |x〉 ⊗ |y + 2x〉 ⊗ (V †)x+yV y|z〉

= |x〉 ⊗ |y〉 ⊗ (V †)x+yV y|z〉
|ψ5〉 = |x〉 ⊗ |y〉 ⊗ V x(V †)x+yV y|z〉

In the last expression, giving the output, x + y has to be understood modulo 2. Namely
|ψout〉 = |x, y〉 ⊗ V x(V †)x+yV y|z〉. So that if (x, y) 6= (1, 1) then the one-qubit operation
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Fig. 3 – Circuit for the C2(U) gate. V is any unitary satisfying V 2 = U . The special case
V = (1− ı)(I + ıX)/2 corresponds to the Toffoli gate

V x(V †)x+yV y is always the indentity I, since V † = V −1. However, if x = y = 1 then
x+ y = 0,mod 2 and V x(V †)x+yV y = V 2 = U . Thus V x(V †)x+yV y = Uxy for all (x, y) ∈
{0, 1}×2. And therefore |ψout〉 = |x, y〉 ⊗ Uxy|z〉 = C2(U)|x, y, z〉.
It is easy to check that if V = (1 − ı)(I + ıX)/2 = e−ıπ/4 eıπX/4, V 2 = −ı(cosπ/2 +
ı sinπ/2X) = X. So that the previous circuit implements the Toffoli gate.

– 4.23- Construct a C1(U) gate for U = Rx(θ) and U = Ry(θ) using only cnot and single
qubit gates. Can you reduce the number of single qubit gates from three to two ? 2

Fig. 4 – Circuit implementing C1(U) : here ABC = I and U = eıαAXBXC.

The quantum circuit in Figure 4 describes how to implement a C1(U) gate from using
only one-qubit and cnot gates.
By construction detU = eıα. If U = Ry(θ) = eıθY then α = 0. Moreover, taking A =
I,B = e−ıθY/2 and C = eıθY/2, leads to ABC = BC = I and AXBXC = XBXC =
eıθY/2eıθY/2 = eıθY since XYX = −Y (see Exercise 4.7). In this case then, only the two
1-qubit gates B,C are needed. Actually A and C could be interchanged here.
If U = Rx(θ) however, a solution is given by A = H,B = e−ıθZ/2 and C = eıθZ/2H. This
is because HZH = X and XZX = −Z (see Exercise 4.13). It does not seem possible to
reduce the number of single qubit gates then.
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– 4.24- Verify that Figure 5 implements the Toffoli gate 2

Fig. 5 – Implementation of the Toffoli gate

To compute the outcome of the r.h.s. it will be convenient to proceed gate by gate as
indicated by the arrows in Figure 5. Since T = eıπ/8e−ıπZ/8 and since XZX = −Z it
follows that XT †X = e−ıπ/4T . It is easy to jump directly to the step #9. This gives

|ψ1〉 = |x, y, z〉 , |ψ9〉 = |x, y〉 ⊗XxT †XyTXxT †XyH|z〉

|ψ10〉 = |x〉 ⊗ T †|y〉 ⊗ TXxT †XyTXxT †XyH|z〉
|ψ11〉 = |x〉 ⊗XxT †|y〉 ⊗HTXxT †XyTXxT †XyH|z〉
|ψ12〉 = |x〉 ⊗ T †XxT †|y〉 ⊗HTXxT †XyTXxT †XyH|z〉
|ψ13〉 = |x〉 ⊗XxT †XxT †|y〉 ⊗HTXxT †XyTXxT †XyH|z〉
|ψ14〉 = eıπx/4|x〉 ⊗ SXxT †XxT †|y〉 ⊗HTXxT †XyTXxT †XyH|z〉

where T |x〉 = eıπx/4|x〉 has been used. If x = 0 then

|ψout〉 = |0〉 ⊗ |y〉 ⊗ |z〉 = toffoli|0, y, z〉 .

as can be checked immediately. If x = 1 then eıπx/4SXxT †XxT †|y〉 = eıπ/4SXT †XT †|y〉 =
S|y〉 = (ı)y|y〉. Thus, whenever y = 0 this gives

|ψout〉 = |1〉 ⊗ |0〉 ⊗HTXT †TXT †H|z〉 = |1, 0, z〉

If now x = y = 1 then

|ψout〉 = |1, 1〉 ⊗ ıHTXT †XTXT †XH|z〉 = toffoli|1, 0, z〉 .

noindent However it is easy to check that

TXT †X =
[
e−ıπ/4 0

0 eıπ/4

]
⇒ (TXT †X)2 = −ıZ .
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So that

|ψout〉 = |1, 1〉 ⊗HZH|z〉 = |1, 1〉 ⊗X|z〉 = toffoli|1, 1, z〉 .

Hence the result is the same as for the Toffoli gate for all values of (x, y, z).

– 4.25- Recall that the Fredkin (controlled-swap) gate performs the transform

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


(6)

1. Give a quantum circuit which uses three Toffoli gates to construct the Fredkin gate
(Hint : think of the swap-gate construction- you can control each gate one at a time).

2. Show that the first and the last Toffoli gates can be replaced by cnot-gates.

3. Now replace the middle Toffoli gate with the circuit of Figure 3 to obtain a Fredkin
gate construction using only six two-qubit gates.

4. Can you come up with an even simpler construction, with five two-qubit gates ?

2

Fig. 6 – The Fredkin gate is a controlled-swap gate

1. As can be seem from eq. (6), the Fredkin gate acts on the computational basis as
F |0, y, z〉 = |0, y, z〉 and F |1, y, z〉 = |1, z, y〉. In other words if swap|y, z〉 = |z, y〉
then it can be written as F |x, y, z〉 = |x〉 ⊗ (swap)x|y, z〉. Hence the Fredkin gate is
nothing but a controlled-swap. The swap-gate can be implemented by three alter-
nating cnot-gates, suggesting that the Fredkin gate be given by the quantum circuit
described on the l.h.s. of Figure 6. A direct calculation of the outcome of this quan-
tum circuit gives indeed, if |ψi〉 represents the quantum state of the computer after
the i-th gate,
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|ψ1〉 = |x, y, z + xy〉
|ψ2〉 = |x, y + xz + x2y, z + xy〉

= |x, xy + xz, z + xy〉
|ψout〉 = |ψ3〉 = |x, xy + xz, z + xy + xxy + x2z〉

= |x, xy + xz, xz + xy〉

In these equations, x = x2, x = 1 − x = 1 + x, xx = 0 have been used. If x = 0 the
outcome is therefore |0, y, z〉 while if x = 1 it is |1, z, y〉. Hence the l.h.s. of Figure 6
implements indeed the Fredkin gate.

2. Actually the left and the right Toffoli gates can be replaced by a simple cnot gate,
as in the r.h.s. of Figure 6. For indeed the same calculation performed now on the
r.h.s. gives

|ψ1〉 = |x, y, z + y〉
|ψ2〉 = |x, y + xz + xy, z + y〉

= |x, xy + xz, z + y〉
|ψout〉 = |ψ3〉 = |x, xy + xz, z + y + xy + xz〉

= |x, xy + xz, xz + xy〉

giving indeed the same result.

3. Replacing the Toffoli gate in the middle by the quantum circuit given in Figure 3, will
give Figure 7, where V = e−ıπ/4(I+ ıX)/

√
2. In such a case V 2 = X, or, equivalently

(V †)2 = X. It can be checked directly that the r.h.s. of Figure 7 gives indeed the
Fredkin gate for, using the same type of computation as before,

|ψ1〉 = |x, y, z ⊕ y〉
|ψ2〉 = |x〉 ⊗ V y⊕z|y〉 ⊗ |y ⊕ z〉
|ψ3〉 = |x〉 ⊗ V y⊕z|y〉 ⊗ |x⊕ y ⊕ z〉
|ψ4〉 = |x〉 ⊗ (V †)x⊕y⊕zV y⊕z|y〉 ⊗ |x⊕ y ⊕ z〉
|ψ5〉 = |x〉 ⊗ (V †)x⊕y⊕zV y⊕z|y〉 ⊗ |y ⊕ z〉
|ψ6〉 = |x〉 ⊗ V x(V †)x⊕y⊕zV y⊕z|y〉 ⊗ |y ⊕ z〉

= |x〉 ⊗ |u〉 ⊗ |y ⊕ z〉
|ψout〉 = |ψ7〉 = |x〉 ⊗ |u〉 ⊗ |u⊕ y ⊕ z〉

where

|u〉 = V x(V †)x⊕y⊕zV y⊕z|y〉 .
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Fig. 7 – Quantum circuit implementing the Fredkin gate

Hence if x = 0 then |u〉 = |y〉 and |u ⊕ y ⊕ z〉 = |z〉. If x = 1 then |u〉 =
V (V †)1−y⊕zV y⊕z|y〉 = V 2{y⊕z}|y〉 = Xy⊕z|y〉 = |y⊕y⊕z〉 = |z〉. Then |u⊕y⊕z〉 = |y〉.
Thus

|ψout〉 = |x〉 ⊗ (swap)x|y, z〉 = F |x, y, z〉 .

This circuit requires seven elementary two-qubit-gates and not six as suggested. Ho-
wever, the product of two such gates is a two-qubit gate so that the product of the
first gates on the r.h.s. of Figure 7 can be considered as a unique two-qubit gate,
meaning that only 6 such gates are necessary. If G denotes this product then

G|y, z〉 = e−ıπ/4 (|y〉+ ı|z〉)√
2

4. It does not seem possible to decrease the number of two-qubit gates.

– 4.35- (Measurement commutes with controls) A consequence of the principle of
deferred measurements is that measurements commute with quantum gates when the qubit
being measured is a control qubit, that is :

Fig. 8 –

(Recall that double lines represents classical bits in this diagram.) Prove the first equality.
The rightmost circuit is simply a convenient notation to depict the use of measurement
result to classically control a quantum gate. 2
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If |x, y〉 is the input in these circuit, then on the leftmost circuit, the quantum state of
the computer before measurement is |x〉⊗Ux|y〉. In general then the input will be a linear
combinations

∑
x,y αxy|x, y〉 of the computational basis. The measurement will give an

outcome for the value of the first qubit. If this outcome is x, then then, thanks to the
axioms about measurement, the output will be given by

|ψout〉 =

∑
y αxyU

x|y〉√∑
y |αxy|2

= Ux

∑
y αxy|y〉√∑

y |αxy|2

In the middle circuit, the measurement of the first qubit is made first. If x is the outcome
then the new state, right after the measurement is given by

|ψmeas〉 =

∑
y αxy|y〉√∑

y |αxy|2

The classical bit x is then applied to control the gate U so that the output will be Ux|ψmeas〉
which the same output as for the leftmost circuit.


