Georgia Tech
Math, Physics \& Computing
Math 4782, Phys 4782, CS4803

Quantum Information \& Quantum Computing

Homework \# 2

Due September 18, 2007

1. Read carefully Nielsen-Chang, Section $4.2 \& 4.3$.
2. Treat as many exercises in Section 4.3 as possible.
3. Turn in exercises (to be graded) \# 4.2, 4.4, 4.5, 4.7, 4.8, 4.9, 4.13, 4.17, 4.18, 4.21, 4.23, 4.24, 4.25, 4.35 .

Exercises :

- 4.2- Let $x \in \mathbb{R}$ and A be a matrix such that $A^{2}=1$ then show that $e^{\imath x A}=\cos x I+\imath \sin x A$.

By definition

$$
\begin{aligned}
e^{\imath x A} & =\sum_{n=0}^{\infty} \frac{(\imath x A)^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{(\imath x A)^{2 n}}{(2 n)!}+\sum_{n=0}^{\infty} \frac{(\imath x A)^{2 n+1}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} I+\imath \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} A \\
& =\cos x I+\imath \sin x A
\end{aligned}
$$

- 4.4- Express the Hadamard gate as a product of R_{x} and R_{y} rotation and a phase. By definition the matrix of the Hadamard gate in the computer basis is given by

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=\frac{X+Z}{\sqrt{2}} .
$$

Thanks to (4.2), $e^{\imath \pi X / 4}=(I+\imath X) / \sqrt{2}$ and $e^{\imath \pi Z / 4}=(I+\imath Z) / \sqrt{2}$ are the R_{x}, R_{z} rotations of angle $\pi / 4$. Hence

$$
\begin{aligned}
\frac{(I+\imath X)}{\sqrt{2}} \frac{(I+\imath Z)}{\sqrt{2}} \frac{(I+\imath X)}{\sqrt{2}} & =\frac{1}{2 \sqrt{2}}(I+\imath(X+Z)-X Z)(I+\imath X) \\
& =\frac{1}{2 \sqrt{2}}(I+\imath(X+Z)-X Z+\imath X-I-Z X-\imath X Z X) \\
& =\frac{\imath}{\sqrt{2}}(X+Z)=\imath H
\end{aligned}
$$

where $X Z+Z X=0 \Rightarrow X Z X=-Z$ have been used. Thus $H=e^{-\imath \pi / 2} e^{\imath \pi X / 4} e^{\imath \pi Z / 4} e^{\imath \pi X / 4}$. Here $\hat{n}=\left(n_{x}, n_{y}, n_{z}\right) \in \mathbb{R}^{3}$ is a vector of length one. Thus

$$
\begin{aligned}
(\hat{n} \cdot \vec{\sigma})^{2} & =\left(n_{x} X+n_{y} Y+n_{z} Z\right)^{2} \\
& =\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) I+n_{x} n_{y}(X Y+Y X)+n_{y} n_{z}(Y Z+Z Y)+n_{z} n_{x}(Z X+X Z) \\
& =I
\end{aligned}
$$

since $X Y+Y X=0=Y Z+Z Y=Z X+X Z$.

- 4.7- Show that $X Y X=-Y$ and use it to prove that $X R_{y}(\theta) X=R_{y}(-\theta)$.

By definition $X=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $Y=\left[\begin{array}{rr}0 & -\imath \\ \imath & 0\end{array}\right]$. Therefore a direct calculation gives

$$
X Y=\left[\begin{array}{rr}
\imath & 0 \\
0 & -\imath
\end{array}\right], \quad Y X=\left[\begin{array}{rr}
-\imath & 0 \\
0 & \imath
\end{array}\right]=-X Y
$$

Hence $X Y X=-Y X^{2}=-Y$. Moreover, thanks to (4.2), $R_{y}(\theta)=\cos \theta I+\imath \sin \theta Y$ so that indeed

$$
X R_{y}(\theta) X=\cos \theta X^{2}+\imath \sin \theta X Y X=\cos \theta I-\imath \sin \theta Y=R_{y}(-\theta)
$$

- 4.8- An arbitrary single qubit unitary operator can be written in the form

$$
\begin{equation*}
U=e^{\imath \alpha} R_{\hat{n}}(\theta) \tag{1}
\end{equation*}
$$

for some real numbers α, θ and a tridimensional unit vector \hat{n}.

1. Prove this fact.
2. Find values for α, θ and \hat{n} giving the Hadamard gate H.
3. Find values for α, θ and \hat{n} giving the phase gate $S=\left[\begin{array}{ll}1 & 0 \\ 0 & \imath\end{array}\right]$.

If eq. (1) holds, since $H=(X+Z) / \sqrt{2}$, it follows that choosing $\alpha=-\pi / 2, \theta=\pi / 2$ and $\hat{n}=(1,0,1) / \sqrt{2}$ gives

$$
{ }_{-\imath}\left\{\cos \pi / 2+\imath \sin \pi / 2\left(\frac{X+Z}{\sqrt{2}}\right)\right\}=\frac{(X+Z)}{\sqrt{2}}=H
$$

In much the same way S is obtained in choosing $\alpha=\pi / 4, \theta=-\pi / 4$ and $\hat{n}=(0,0,1)$ giving

$$
S=e^{\imath \pi / 4} e^{-\imath \pi Z / 4}
$$

Let now U be a 2×2 unitary matrix and it will be shown that (1) holds. First, $\operatorname{det} U$ is a pure phase. For indeed $|\operatorname{det} U|^{2}=\operatorname{det} U \overline{\operatorname{det} U}=\operatorname{det} U \operatorname{det} U^{\dagger}=\operatorname{det} U U^{\dagger}=1$. Therefore there is $\alpha \in \mathbb{R}$ such that $\operatorname{det} U=e^{22 \alpha}$. Hence $U=e^{2 \alpha} W$ with W unitary and $\operatorname{det} W=1$.

Since W is unitary, it is normal and thus can be diagonalized in an orthonormal basis with eigenvalues $\lambda_{ \pm}$. Unitarity implies that both eigenvalues are pure phases. Since $\operatorname{det} W=$ $\lambda_{+} \lambda_{-}=1$ there is a real number θ such that $\lambda_{ \pm}=e^{ \pm \imath \theta}$. As a consequence $\operatorname{tr} W=2 \cos \theta$. As any 2×2 matrix, W can be decomposed in a unique way in the Pauli basis namely

$$
W=w_{0} I+w_{x} X+w_{y} Y+w_{z} Z, \quad w_{i} \in \mathbb{C}
$$

Clearly $\operatorname{tr} W=2 w_{0}$ so that $w_{0}=\cos \theta$. Moreover writing w_{i} as $u_{i}+v_{i}$ with $u_{i}, v_{i} \in \mathbb{R}$ (for $i=x, y, z)$, this gives, with $\vec{u}=\left(u_{x}, u_{y}, u_{z}\right)$ and $\vec{v}=\left(v_{x}, v_{y}, v_{z}\right)$,

$$
W=\cos \theta I+\vec{u} \cdot \vec{\sigma}+\imath \vec{v} \cdot \vec{\sigma}, \quad W^{\dagger}=\cos \theta I+\vec{u} \cdot \vec{\sigma}-\imath \vec{v} \cdot \vec{\sigma}
$$

By unitarity, it follows that

$$
I=W W^{\dagger}=\left(\cos ^{2} \theta+|\vec{u}|^{2}+|\vec{v}|^{2}\right) I+(2 \cos \theta \vec{u}+\vec{u} \wedge \vec{v}) \cdot \vec{\sigma},
$$

giving

$$
\cos ^{2} \theta+|\vec{u}|^{2}+|\vec{v}|^{2}=1, \quad 2 \cos \theta \vec{u}=-\vec{u} \wedge \vec{v}
$$

From the second equation, it follows that $2 \cos \theta|\vec{u}|^{2}=0$ so that either $2 \cos \theta=0$ or $\vec{u}=0$. If $\vec{u} \neq 0$, then \vec{u} and \vec{v} are colinear, and thanks to the l.h.s, $|\vec{u}|^{2}+|\vec{v}|^{2}=1$ so that there is $\phi \in \mathbb{R}$ and a unit vector \hat{n} such that $\vec{u}+\imath \vec{v}=e^{\imath \phi} \hat{n}$. Then, since $\operatorname{det} \hat{n} \vec{\sigma}=-1$ it implies that $\phi=\pi$ and eq. (1) holds with $\theta=\pi / 2$.
If $\vec{u}=0$, then $|\vec{v}|^{2}=\sin ^{2} \theta$ so that there is a unit vector \hat{n} such that

$$
W=\cos \theta I+\imath \sin \theta \hat{n} \cdot \vec{\sigma}=R_{\hat{n}}(\theta) .
$$

and eq. (1) also holds.

- 4.9- Explain why a single qubit unitary operator can be written as

$$
U=\left[\begin{array}{rr}
e^{\imath(\alpha-\beta / 2-\delta / 2)} \cos \gamma / 2 & -e^{\imath(\alpha-\beta / 2+\delta / 2)} \sin \gamma / 2 \tag{2}\\
e^{\imath(\alpha+\beta / 2-\delta / 2)} \sin \gamma / 2 & e^{\imath(\alpha+\beta / 2+\delta / 2)} \cos \gamma / 2
\end{array}\right]
$$

Any 2×2 unitary matrix can be written as

$$
U=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

where the two columns makes an orthonormal basis, namely

$$
\begin{equation*}
|a|^{2}+|c|^{2}=1, \quad|b|^{2}+|d|^{2}=1, \quad a \bar{b}+c \bar{d}=0 \tag{3}
\end{equation*}
$$

If $c=0$ (resp. $b=0$) this implies $b=0$ (resp. $c=0$) and both a, d are pure phases, so that it is always possible to find (non unique) real numbers α, β, δ such that $a=e^{\imath(\alpha-\beta / 2-\delta / 2)}$ and $d=e^{\imath(\alpha+\beta / 2+\delta / 2)}$ and eq. (2) holds. Similarly if $a=0$ (resp. $d=0$) then $d=0$ (resp. $a=0$) and it is always possible to find (non unique) real numbers α, β, δ such that $b=-e^{\imath(\alpha-\beta / 2+\delta / 2)}$ and $c=e^{\imath(\alpha+\beta / 2-\delta / 2)}$ so that eq. (2) holds again.
Therefore it is possible to assume that none of the cœefficients a, b, c, d vanish. In particular, there are real numbers $0<\gamma, \gamma^{\prime}<\pi$ such that $|a|=\cos \gamma / 2,|c|=\sin \gamma / 2,|d|=\cos \gamma^{\prime} / 2$
and $|b|=\sin \gamma^{\prime} / 2$. In addition, since $a \bar{b}=-c \bar{d}$, it follows that $0=|a||b|-|c||d|=$ $\sin \left(\gamma^{\prime}-\gamma\right) / 2$ and therefore $\gamma=\gamma^{\prime}$ since both belong to $(0, \pi)$. Thus, there are real numbers $\theta_{a}, \theta_{b}, \theta_{c}, \theta_{d}$ such that

$$
\begin{array}{rlrl}
a & =\cos \gamma / 2 e^{\imath \theta_{a}} & b & =-\sin \gamma / 2 e^{\imath \theta_{b}} \\
c & =\sin \gamma / 2 e^{\imath \theta_{c}} & d & =\cos \gamma / 2 e^{\imath \theta_{d}}
\end{array}
$$

From eq. (3), it follows that $\theta_{c}-\theta_{d}=\theta_{a}-\theta_{b}$ or equivalently, there is a real number α such that

$$
\theta_{a}+\theta_{d}=\theta_{c}+\theta_{b}=2 \alpha
$$

Therefore it is possible to find real numbers ϕ and ϕ^{\prime} such that

$$
\begin{array}{ll}
\theta_{a}=\alpha-\phi & \theta_{b}=\alpha-\phi^{\prime} \\
\theta_{c}=\alpha+\phi^{\prime} & \theta_{d}=\alpha+\phi
\end{array}
$$

Setting $\phi+\phi^{\prime}=\beta$ and $\phi-\phi^{\prime}=\delta$ gives eq. (2).

- 4.13- (Circuit identities) It is useful to be able to simplify circuits by inspection, using well-known identities. Prove the following three identities

$$
\begin{equation*}
H X H=Z, \quad H Y H=-Y, \quad H Z H=X \tag{4}
\end{equation*}
$$

By definition, $X Z=-Z X, X^{2}=I=Z^{2}$ and $Z X=\imath Y$. Moreover the Hadamard operator can be written as $H=(X+Z) / \sqrt{2}$. These definitions leads to

$$
H^{\dagger}=H, \quad H^{2}=\frac{X^{2}+X Z+Z X+Z^{2}}{2}=I
$$

In addition

$$
H X H=\frac{X^{3}+X^{2} Z+Z X^{2}+Z X Z}{2}=\frac{X+2 Z-X}{2}=Z
$$

Consequently, multiplying to the right and to the left by H gives $H Z H=X$, since $H^{2}=I$. At last, $Y=-\imath Z X=\imath X Z$ so that $H Y H=\imath H X H H Z H=\imath Z X=-Y$.

- 4.17- (Building CNOT from the controlled- Z gate) Construct a CNOT gate from one controlled- Z gate, that is, the gate whose action on the computational basis is specified by the unitary matrix

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \tag{5}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

and the two Hadamard gates, specifying the control and the target qubits.

Fig. 1 - How to construct CnOt from the controlled- Z gate
The controlled- Z gate can be described algebraically as $C^{1}(Z)|x, y\rangle=|x\rangle \otimes Z^{x}|y\rangle$. It is easy to check that its matrix is given by eq. (5) in the computational basis. Since $X=H Z H$ (see eq. (4)), СNOT $|x, y\rangle=|x\rangle \otimes X^{x}|y\rangle=|x\rangle \otimes(H Z H)^{x}|y\rangle=|x\rangle \otimes H Z^{x} H|y\rangle=$ $I \otimes H \cdot C^{1}(Z) \cdot I \otimes H|x, y\rangle$ giving the result described in Figure 1.

- 4.18- Show that

Fig. 2 -

By construction $C^{1}(Z)|x, y\rangle=|x\rangle \otimes Z^{x}|y\rangle=|x\rangle \otimes(-1)^{x y}|y\rangle=(-1)^{x y}|x, y\rangle=Z^{y}|x\rangle \otimes|y\rangle$ which is exactly what Figure 2 expresses.

- 4.21- Verify that Figure 3 implements the $C^{2}(U)$ operation

As can be seen from Figure 3, there are five gates in the circuit of the r.h.s. Therefore the quantum states describing the computer can be labeled by $\left|\psi_{0}\right\rangle, \cdots,\left|\psi_{5}\right\rangle$ if $\left|\psi_{0}\right\rangle$ denotes the input, while $\left|\psi_{s}\right\rangle$ denotes the state after the s-th gate. So that $\left|\psi_{5}\right\rangle$ is the output. If the input is given by $\left|\psi_{0}\right\rangle=|x, y, z\rangle$ then

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & =|x\rangle \otimes|y\rangle \otimes V^{y}|z\rangle \\
\left|\psi_{2}\right\rangle & =|x\rangle \otimes|y+x\rangle \otimes V^{y}|z\rangle \\
\left|\psi_{3}\right\rangle & =|x\rangle \otimes|y+x\rangle \otimes\left(V^{\dagger}\right)^{x+y} V^{y}|z\rangle \\
\left|\psi_{4}\right\rangle & =|x\rangle \otimes|y+2 x\rangle \otimes\left(V^{\dagger}\right)^{x+y} V^{y}|z\rangle \\
& =|x\rangle \otimes|y\rangle \otimes\left(V^{\dagger}\right)^{x+y} V^{y}|z\rangle \\
\left|\psi_{5}\right\rangle & =|x\rangle \otimes|y\rangle \otimes V^{x}\left(V^{\dagger}\right)^{x+y} V^{y}|z\rangle
\end{aligned}
$$

In the last expression, giving the output, $x+y$ has to be understood modulo 2. Namely $\left|\psi_{\text {out }}\right\rangle=|x, y\rangle \otimes V^{x}\left(V^{\dagger}\right)^{x+y} V^{y}|z\rangle$. So that if $(x, y) \neq(1,1)$ then the one-qubit operation

Fig. 3 - Circuit for the $C^{2}(U)$ gate. V is any unitary satisfying $V^{2}=U$. The special case $V=(1-\imath)(I+\imath X) / 2$ corresponds to the Toffoli gate
$V^{x}\left(V^{\dagger}\right)^{x+y} V^{y}$ is always the indentity I, since $V^{\dagger}=V^{-1}$. However, if $x=y=1$ then $x+y=0, \bmod 2$ and $V^{x}\left(V^{\dagger}\right)^{x+y} V^{y}=V^{2}=U$. Thus $V^{x}\left(V^{\dagger}\right)^{x+y} V^{y}=U^{x y}$ for all $(x, y) \in$ $\{0,1\}^{\times 2}$. And therefore $\left|\psi_{\text {out }}\right\rangle=|x, y\rangle \otimes U^{x y}|z\rangle=C^{2}(U)|x, y, z\rangle$.
It is easy to check that if $V=(1-\imath)(I+\imath X) / 2=e^{-\imath \pi / 4} e^{\imath \pi X / 4}, V^{2}=-\imath(\cos \pi / 2+$ $\imath \sin \pi / 2 X)=X$. So that the previous circuit implements the Toffoli gate.

- 4.23- Construct a $C^{1}(U)$ gate for $U=R_{x}(\theta)$ and $U=R_{y}(\theta)$ using only CNOT and single qubit gates. Can you reduce the number of single qubit gates from three to two ?

Fig. 4 - Circuit implementing $C^{1}(U)$: here $A B C=I$ and $U=e^{\imath \alpha} A X B X C$.
The quantum circuit in Figure 4 describes how to implement a $C^{1}(U)$ gate from using only one-qubit and CNOT gates.
By construction $\operatorname{det} U=e^{\imath \alpha}$. If $U=R_{y}(\theta)=e^{\imath \theta Y}$ then $\alpha=0$. Moreover, taking $A=$ $I, B=e^{-\imath \theta Y / 2}$ and $C=e^{\imath \theta Y / 2}$, leads to $A B C=B C=I$ and $A X B X C=X B X C=$ $e^{\imath \theta Y / 2} e^{\imath \theta Y / 2}=e^{\imath \theta Y}$ since $X Y X=-Y$ (see Exercise 4.7). In this case then, only the two 1-qubit gates B, C are needed. Actually A and C could be interchanged here.
If $U=R_{x}(\theta)$ however, a solution is given by $A=H, B=e^{-\imath \theta Z / 2}$ and $C=e^{\imath \theta Z / 2} H$. This is because $H Z H=X$ and $X Z X=-Z$ (see Exercise 4.13). It does not seem possible to reduce the number of single qubit gates then.

- 4.24- Verify that Figure 5 implements the Toffoli gate

Fig. 5 - Implementation of the Toffoli gate
To compute the outcome of the r.h.s. it will be convenient to proceed gate by gate as indicated by the arrows in Figure 5. Since $T=e^{\imath \pi / 8} e^{-\imath \pi Z / 8}$ and since $X Z X=-Z$ it follows that $X T^{\dagger} X=e^{-\imath \pi / 4} T$. It is easy to jump directly to the step $\# 9$. This gives

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & =|x, y, z\rangle, \quad\left|\psi_{9}\right\rangle=|x, y\rangle \otimes X^{x} T^{\dagger} X^{y} T X^{x} T^{\dagger} X^{y} H|z\rangle \\
\left|\psi_{10}\right\rangle & =|x\rangle \otimes T^{\dagger}|y\rangle \otimes T X^{x} T^{\dagger} X^{y} T X^{x} T^{\dagger} X^{y} H|z\rangle \\
\left|\psi_{11}\right\rangle & =|x\rangle \otimes X^{x} T^{\dagger}|y\rangle \otimes H T X^{x} T^{\dagger} X^{y} T X^{x} T^{\dagger} X^{y} H|z\rangle \\
\left|\psi_{12}\right\rangle & =|x\rangle \otimes T^{\dagger} X^{x} T^{\dagger}|y\rangle \otimes H T X^{x} T^{\dagger} X^{y} T X^{x} T^{\dagger} X^{y} H|z\rangle \\
\left|\psi_{13}\right\rangle & =|x\rangle \otimes X^{x} T^{\dagger} X^{x} T^{\dagger}|y\rangle \otimes H T X^{x} T^{\dagger} X^{y} T X^{x} T^{\dagger} X^{y} H|z\rangle \\
\left|\psi_{14}\right\rangle & =e^{\imath \pi x / 4}|x\rangle \otimes S X^{x} T^{\dagger} X^{x} T^{\dagger}|y\rangle \otimes H T X^{x} T^{\dagger} X^{y} T X^{x} T^{\dagger} X^{y} H|z\rangle
\end{aligned}
$$

where $T|x\rangle=e^{\imath \pi x / 4}|x\rangle$ has been used. If $x=0$ then

$$
\left|\psi_{\text {out }}\right\rangle=|0\rangle \otimes|y\rangle \otimes|z\rangle=\operatorname{TOFFOLI}|0, y, z\rangle .
$$

as can be checked immediately. If $x=1$ then $e^{\imath \pi x / 4} S X^{x} T^{\dagger} X^{x} T^{\dagger}|y\rangle=e^{\imath \pi / 4} S X T^{\dagger} X T^{\dagger}|y\rangle=$ $S|y\rangle=(\imath)^{y}|y\rangle$. Thus, whenever $y=0$ this gives

$$
\left|\psi_{\text {out }}\right\rangle=|1\rangle \otimes|0\rangle \otimes H T X T^{\dagger} T X T^{\dagger} H|z\rangle=|1,0, z\rangle
$$

If now $x=y=1$ then

$$
\left|\psi_{\text {out }}\right\rangle=|1,1\rangle \otimes \imath H T X T^{\dagger} X T X T^{\dagger} X H|z\rangle=\text { TOFFOLI }|1,0, z\rangle .
$$

noindent However it is easy to check that

$$
T X T^{\dagger} X=\left[\begin{array}{cc}
e^{-\imath \pi / 4} & 0 \\
0 & e^{\imath \pi / 4}
\end{array}\right] \quad \Rightarrow \quad\left(T X T^{\dagger} X\right)^{2}=-\imath Z
$$

So that

$$
\left|\psi_{\text {out }}\right\rangle=|1,1\rangle \otimes H Z H|z\rangle=|1,1\rangle \otimes X|z\rangle=\text { TOFFOLI }|1,1, z\rangle .
$$

Hence the result is the same as for the Toffoli gate for all values of (x, y, z).

- 4.25- Recall that the Fredkin (controlled-SWAP) gate performs the transform

$$
\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{6}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

1. Give a quantum circuit which uses three Toffoli gates to construct the Fredkin gate (Hint : think of the SWAP-gate construction- you can control each gate one at a time).
2. Show that the first and the last Toffoli gates can be replaced by CNOT-gates.
3. Now replace the middle Toffoli gate with the circuit of Figure 3 to obtain a Fredkin gate construction using only six two-qubit gates.
4. Can you come up with an even simpler construction, with five two-qubit gates?

Fig. 6 - The Fredkin gate is a controlled-swap gate

1. As can be seem from eq. (6), the Fredkin gate acts on the computational basis as $F|0, y, z\rangle=|0, y, z\rangle$ and $F|1, y, z\rangle=|1, z, y\rangle$. In other words if SWAP $|y, z\rangle=|z, y\rangle$ then it can be written as $F|x, y, z\rangle=|x\rangle \otimes(\operatorname{SWAP})^{x}|y, z\rangle$. Hence the Fredkin gate is nothing but a controlled-swap. The SWAP-gate can be implemented by three alternating cnot-gates, suggesting that the Fredkin gate be given by the quantum circuit described on the l.h.s. of Figure 6. A direct calculation of the outcome of this quantum circuit gives indeed, if $\left|\psi_{i}\right\rangle$ represents the quantum state of the computer after the i-th gate,

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & =|x, y, z+x y\rangle \\
\left|\psi_{2}\right\rangle & =\left|x, y+x z+x^{2} y, z+x y\right\rangle \\
& =|x, \bar{x} y+x z, z+x y\rangle \\
\left|\psi_{\text {out }}\right\rangle=\left|\psi_{3}\right\rangle & =\left|x, \bar{x} y+x z, z+x y+x \bar{x} y+x^{2} z\right\rangle \\
& =|x, \bar{x} y+x z, \bar{x} z+x y\rangle
\end{aligned}
$$

In these equations, $x=x^{2}, \bar{x}=1-x=1+x, x \bar{x}=0$ have been used. If $x=0$ the outcome is therefore $|0, y, z\rangle$ while if $x=1$ it is $|1, z, y\rangle$. Hence the l.h.s. of Figure 6 implements indeed the Fredkin gate.
2. Actually the left and the right Toffoli gates can be replaced by a simple cnot gate, as in the r.h.s. of Figure 6. For indeed the same calculation performed now on the r.h.s. gives

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & =|x, y, z+y\rangle \\
\left|\psi_{2}\right\rangle & =|x, y+x z+x y, z+y\rangle \\
& =|x, \bar{x} y+x z, z+y\rangle \\
\left|\psi_{\text {out }}\right\rangle=\left|\psi_{3}\right\rangle & =|x, \bar{x} y+x z, z+y+\bar{x} y+x z\rangle \\
& =|x, \bar{x} y+x z, \bar{x} z+x y\rangle
\end{aligned}
$$

giving indeed the same result.
3. Replacing the Toffoli gate in the middle by the quantum circuit given in Figure 3, will give Figure 7 , where $V=e^{-\imath \pi / 4}(I+\imath X) / \sqrt{2}$. In such a case $V^{2}=X$, or, equivalently $\left(V^{\dagger}\right)^{2}=X$. It can be checked directly that the r.h.s. of Figure 7 gives indeed the Fredkin gate for, using the same type of computation as before,

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & =|x, y, z \oplus y\rangle \\
\left|\psi_{2}\right\rangle & =|x\rangle \otimes V^{y \oplus z}|y\rangle \otimes|y \oplus z\rangle \\
\left|\psi_{3}\right\rangle & =|x\rangle \otimes V^{y \oplus z}|y\rangle \otimes|x \oplus y \oplus z\rangle \\
\left|\psi_{4}\right\rangle & =|x\rangle \otimes\left(V^{\dagger}\right)^{x \oplus y \oplus z} V^{y \oplus z}|y\rangle \otimes|x \oplus y \oplus z\rangle \\
\left|\psi_{5}\right\rangle & =|x\rangle \otimes\left(V^{\dagger}\right)^{x \oplus y \oplus z} V^{y \oplus z}|y\rangle \otimes|y \oplus z\rangle \\
\left|\psi_{6}\right\rangle & =|x\rangle \otimes V^{x}\left(V^{\dagger}\right)^{x \oplus y \oplus z} V^{y \oplus z}|y\rangle \otimes|y \oplus z\rangle \\
& =|x\rangle \otimes|u\rangle \otimes|y \oplus z\rangle \\
\left|\psi_{\text {out }}\right\rangle=\left|\psi_{7}\right\rangle & =|x\rangle \otimes|u\rangle \otimes|u \oplus y \oplus z\rangle
\end{aligned}
$$

where

$$
|u\rangle=V^{x}\left(V^{\dagger}\right)^{x \oplus y \oplus z} V^{y \oplus z}|y\rangle .
$$

Fig. 7 - Quantum circuit implementing the Fredkin gate

Hence if $x=0$ then $|u\rangle=|y\rangle$ and $|u \oplus y \oplus z\rangle=|z\rangle$. If $x=1$ then $|u\rangle=$ $V\left(V^{\dagger}\right)^{1-y \oplus z} V^{y \oplus z}|y\rangle=V^{2\{y \oplus z\}}|y\rangle=X^{y \oplus z}|y\rangle=|y \oplus y \oplus z\rangle=|z\rangle$. Then $|u \oplus y \oplus z\rangle=|y\rangle$. Thus

$$
\left|\psi_{\text {out }}\right\rangle=|x\rangle \otimes(\mathrm{SWAP})^{x}|y, z\rangle=F|x, y, z\rangle
$$

This circuit requires seven elementary two-qubit-gates and not six as suggested. However, the product of two such gates is a two-qubit gate so that the product of the first gates on the r.h.s. of Figure 7 can be considered as a unique two-qubit gate, meaning that only 6 such gates are necessary. If G denotes this product then

$$
G|y, z\rangle=e^{-\imath \pi / 4} \frac{(|y\rangle+\imath|z\rangle)}{\sqrt{2}}
$$

4. It does not seem possible to decrease the number of two-qubit gates.

- 4.35- (Measurement commutes with controls) A consequence of the principle of deferred measurements is that measurements commute with quantum gates when the qubit being measured is a control qubit, that is :

Fig. 8 -
(Recall that double lines represents classical bits in this diagram.) Prove the first equality. The rightmost circuit is simply a convenient notation to depict the use of measurement result to classically control a quantum gate.

If $|x, y\rangle$ is the input in these circuit, then on the leftmost circuit, the quantum state of the computer before measurement is $|x\rangle \otimes U^{x}|y\rangle$. In general then the input will be a linear combinations $\sum_{x, y} \alpha_{x y}|x, y\rangle$ of the computational basis. The measurement will give an outcome for the value of the first qubit. If this outcome is x , then then, thanks to the axioms about measurement, the output will be given by

$$
\left|\psi_{\text {out }}\right\rangle=\frac{\sum_{y} \alpha_{x y} U^{x}|y\rangle}{\sqrt{\sum_{y}\left|\alpha_{x y}\right|^{2}}}=U^{x} \frac{\sum_{y} \alpha_{x y}|y\rangle}{\sqrt{\sum_{y}\left|\alpha_{x y}\right|^{2}}}
$$

In the middle circuit, the measurement of the first qubit is made first. If x is the outcome then the new state, right after the measurement is given by

$$
\left|\psi_{\text {meas }}\right\rangle=\frac{\sum_{y} \alpha_{x y}|y\rangle}{\sqrt{\sum_{y}\left|\alpha_{x y}\right|^{2}}}
$$

The classical bit x is then applied to control the gate U so that the output will be $U^{x}\left|\psi_{\text {meas }}\right\rangle$ which the same output as for the leftmost circuit.

