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1. Legendre Polynomials: a Summary

Let Pn denotes the monic Legendre polynomial of degree n. Then
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2. The Stone-Wëıerstrass Theorem

The Stone-Wëıerstrass Theorem asserts that any complex valued continuous function on an
interval I = [a, b] ⊂ R can be uniformaly approximated by a sequence of polynomials. The
first proof goes back to a work of Karl Wëıerstrass published in 1885 [3]. It was considerably
generalized by by Marshall H. Stone in a paper published 1937 [1] and the proof was simplified
by Stone in a subsequent paper published in 1948 [2]. In these notes we will not give the proof
of Stone, but an explicit construction of an approximation using the Bernstein polynomials.

2.1. The Bernstein Approximation. The Bernstein polynomials are defined as

(1) Bn,k(t) =

(
n
k

)
tk(1− t)n−k , 0 ≤ k ≤ n .

The main property of these polynomials which will be used here is the following

(2) (i)
n∑
k=0

Bn,k(t) = 1 , (ii) Bn,k(t) ≥ 0 , if 0 ≤ t ≤ 1 .

Let now f : t ∈ [0, 1] 7→ f(t) ∈ C be a continuous function. Then its n-th Bernstein approxima-
tion is defined by

Bnf(t) =
n∑
k=0

f

(
k

n

)
Bn,k(t) .

Then, Bnf is also a polynomial of degree n. The main result is the following version of the
Stone-Wëıerstrass Theorem

Theorem 1 (Stone-Wëıerstrass). For any continuous function f : [0, 1]→ C

lim
n→∞

sup
0≤t≤1

|f(t)−Bnf(t)| = 0 .

The proof will require several steps including several estimates. Each of these steps will be
described through lemmas.

Lemma 1. The binomial coefficients are bounded as

(
n
k

)
≤

[(
k

n

)k (
1− k

n

)n−k]−1
, 0 ≤ k ≤ n .

Proof: Thanks to eq. (2), each Bernstein polynomial is bounded by 0 ≤ Bn,k(t) ≤ 1 for
t ∈ [0, 1]. Replacing t by k/n gives immediately the result. It is easy to check that t = k/n gives
the maximal value of Bn,k(t), so that this estimate is optimal. 2

Lemma 2. The following inequality holds for t ∈ [0, 1] and for 0 ≤ k ≤ n in integers

0 ≤ Bn,k(t) ≤ e−2n(k/n−t)
2
.
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Proof: Setting σ = k/n , the result of Lemma 1 leads to

Bn,k(t) ≤

[(
t

σ

)σ ( 1− t
1− σ

)1−σ
]n

= enψt(σ) ,

where ψt(σ) denotes the logarithm of the expression in the brackets, namely

ψt(σ) = σ (ln(t)− ln(σ)) + (1− σ) (ln(1− t)− ln(1− σ)) .

In particular ψt vanishes at σ = t. Moreover, its derivative is given by

∂σψt(σ) = ln(t)− ln(σ)− ln(1− t) + ln(1− σ) .

It follows that ∂σψt also vanishes at σ = t. The second derivative is given by

∂2σψt(σ) = − 1

σ(1− σ)
≤ −4 , 0 ≤ σ ≤ 1 .

Using the Taylor expansion to second order gives

ψt(σ) =

∫ σ

t
(τ − t) ∂2σψt(τ) dτ =

∫ t

σ
(t− τ) ∂2σψt(τ) dτ ≤ −2(σ − t)2 .

This inequality gives the result by exponentiation. 2

Lemma 3. For any δ > 0 small enough

∑
|t−k/n|>δ

Bn,k(t) ≤
√
eπ

4
nδ e−nδ

2/2 .

Proof: (i) Thanks to Lemma 2, it follows that∑
|t−k/n|>δ

Bn,k(t) ≤ 2n
∑

k/n−t>δ

1

n
e−2n(t−k/n)

2
.

The r.h.s is a Riemann sum that can be bounded from above by an integral, using the fact that

the function g : x 7→ e−2nx
2

is monotone decreasing over the interval [δ,+∞) using∑
k/n>t+δ

1

n
g

(
k

n
− t
)
≤
∫
δ−1/n

g(x)dx .

Hence, as soon as δ > 2/n, this gives∑
k/n−t>δ

1

n
e−2n(t−k/n)

2 ≤
∫ ∞
δ/2

e−2nx
2
dx .

The Gaussian integral can be estimated by choosing 0 < u < 1 and∫ ∞
A

e−ax
2
dx =

∫ ∞
A

e−uax
2
e−(1−u)ax

2
dx ≤ e−uaA2

∫ ∞
0

e−(1−u)ax
2
dx = e−uaA

2 1

2

√
π

(1− u)a
.

Since u can be chosen anywhere in (0, 1), it is worth optimizing by chosing u = 1 − 1/2aA2

giving
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∫ ∞
A

e−ax
2
dx ≤

√
eπ

4
a e−aA

2
.

Replacing A by δ/2 and a by 2n gives the result. 2

Proof of Theorem 1: Let f : [0, 1] → C be a continuous function. Since the interval [0, 1]
is bounded, it is compact. Therefore f is uniformly continuous. Namely for all ε > 0 there is
δ > 0 such that if s, t are in [0, 1] and satisfy |s− t| ≤ δ then |f(s)− f(t)| ≤ ε/2. Using eq. (2 i),
it follows that

f(t)−Bnf(t) =

n∑
k=0

(
f(t)− f

(
k

n

))
Bn,k(t) .

Let the finite sum over k be decomposed into A =
∑
|t−k/n|≤δ( · ) and B =

∑
|t−k/n|>δ( · ). In

the sum A, since |t − k/n| ≤ δ it follows that |f(t) − f(k/n)| ≤ ε/2. Using eq. (2 i) again this
gives |A| ≤ ε/2. The sum B is bounded by

‖f‖∞ = sup
0≤s≤1

|f(s)| , ⇒ |B| ≤ 2‖f‖∞
∑

|t−k/n|>δ

Bn,k(t) .

Thanks to the Lemma 3, these two estimates give

|f(t)−Bnf(t)| ≤ ε

2
+ 2‖f‖∞

√
eπ nδ e−nδ

2/2 .

Since limn→∞ nδ e
−nδ2/2 = 0, it follows that there is an integer N large enough so that, if n ≥ N ,

then the second term is also bounded by ε/2 leading to

n ≥ N ⇒ |f(t)−Bnf(t)| ≤ ε .
This estimate is uniform w.r.t. t, so that

n ≥ N ⇒ ‖f −Bnf‖∞ ≤ ε .
This implies limn→∞ ‖f −Bnf‖∞ = 0. 2

2.2. The Space C(0, 1) and the Uniform Topology. Let C(0, 1) be the set of all continuous
functions defined on [0, 1] with complex values. It is a complex vector space when endowed with
the following operations: if f, g ∈ C(0, 1) and if λ ∈ C is a scalar

f + g : s ∈ [0, 1] 7→ f(s) + g(s) ∈ C , λf : s ∈ [0, 1] 7→ λf(s) ∈ C .
The reader is invited to check that the sum of two continuous functions is still continuous, that
the addition is commutative and associative, that the function 0(s) = 0 ∀s ∈ [0, 1] is a neutral
element and that −f is the opposite to f . Moreover the reader is invited to check that the scalar
multiplication λf gives also a continuous function, that is also associative and distributive w.r.t.
the addition.

The uniform norm is defined by

‖f‖∞ = sup
s∈[0,1]

|f(s)| .

The reader is invited to check that it satisfies the axiom of norms namely

• ‖f‖∞ ≥ 0, and ‖f‖∞ = 0 if and only if f = 0.
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• ‖λf‖∞ = |λ| ‖f‖∞ if λ ∈ C.
• Triangle inequality: ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞

In addition, the reader is invited to show that the following inequality is equivalent to the
triangle one ∣∣∣‖f‖∞ − ‖g‖∞∣∣∣ ≤ ‖f − g‖∞ .
Hence C(0, 1) is a normed complex vector space. Moreover

Theorem 2. The normed vector space (C(0, 1), ‖ · ‖∞) is a Banach space, namely it is complete
or, equivalently, any Cauchy sequence of continuous function converges to a continuous function.

Proof: (i) Let (fn)n∈N be a Cauchy sequence. Therefore for ε > 0 there is N ∈ N such
that if n,m > N then ‖fn − fm‖∞ ≤ ε. In particular |fn(s) − fm(s)| ≤ ε for any s ∈ [0, 1].
Since fn(s) ∈ C, it is a Cauchy sequence in the complex plane and therefore it converges. Let
f(s) = limn→∞ fn(s). The function f is defined on [0, 1]. By construction, then, if n ≥ N , then
|f(s)−fn(s)| = limm→∞ |fm(s)−fn(s)| ≤ ε. In particular ‖f−fn‖∞ = sups∈[0,1] |f(s)−fn(s)| ≤ ε
as well.

(ii) Using the triangle inequality it follows that
∣∣‖fn‖∞ − ‖fm‖∞∣∣ ≤ ‖fn − fm‖∞ so that the

sequence (‖fn‖∞)n∈N of nonnegative real numbers is also Cauchy, therefore it converges. In
particular

|f(s)| = lim
n→∞

|fn(s)| ≤ lim
n→∞

‖fn‖ <∞ .

Hence the function f is bounded, so that ‖f‖∞ = sups∈[0,1] |f(s)| is a well defined nonnegative
real number.

(iii) It remains to show that f is continuous. Given ε > 0, there is N ∈ N such that for all
n ≥ N , then ‖f − fn‖∞ ≤ ε/3. Consequently, choosing n ≥ N , |f(s)− f(t)| ≤ |f(s)− fn(s)|+
|fn(s) − fn(t)| + |fn(t) − f(t)| ≤ 2ε/3 + |fn(s) − fn(t)|. Since fn is continuous, it is uniformly
continuous on [0, 1], and there is δ > 0 such that is |s− t| ≤ δ then |fn(s)− fn(t)| ≤ ε/3. Hence
if |s− t| ≤ δ then |f(s)− f(t)| ≤ ε showing that f is indeed continuous. 2

Let now C[X] be the set of polynomials in the indeterminate X with complex coefficients. Hence
an element of C[X] is an expression of the form P = p0 + p1X + p2X

2 + · · ·+ pnX
n, where the

pk’s are complex numbers called the coefficients of P . The maximum integer n such that pn 6= 0
is called the degree of P . Given P ∈ C[X] and s ∈ [0, 1] let P (s) be the value of P at s, namely

P (s) = p0 + p1s+ p2s
2 + · · ·+ pns

n ∈ C .
Hence the evaluation of P on points of the interval [0, 1] gives a function defined on [0, 1] with
complex values. Moreover, each monomial Xn : s ∈ [0, 1] 7→ sn ∈ [0, 1] ⊂ C is continuous, so
that P defines an element of C(0, 1). The Stone-Wëıerstrass theorem can be rephrased as follows

Theorem 3 (Stone-Wëıerstrass II). The set of evaluation of polynomials on [0, 1] is a dense
linear subspace of C(0, 1) for the uniform topology.

Proof: Clearly the space C[X] is a linear space and the evaluation map is linear as well. Hence
the set of evaluation of polynomials on [0, 1] is a linear subspace of C(0, 1). Thanks to Theorem 1,
any f ∈ C(0, 1) can be uniformly approximated by its Bernstein approximation Bnf(t). Since
Bnf(t) is a polynomial with respect to t, the result is proved. 2
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Corollary 1 (Stone-Wëıerstrass III). Let −∞ < a < b < +∞ be two real numbers. Let C(a, b)
be the set of continuous functions f : [a, b]→ C. Then the set of evaluations of polynomials on
[a, b] is dense in C(a, b).

Proof: The main reason is that the two normed spaces C(a, b) and C(0, 1) are isomorphic. For
indeed, if s ∈ [a, b] then s = tb + (1 − t)a for some t ∈ [0, 1] given by t = (s − a)/(b − a).
Hence, if g ∈ C(a, b) let φ(g) : t ∈ [0, 1] 7→ g(ta + (1 − t)b) ∈ C. Clearly φ(g) is a continuous
function of t and the map φ : g ∈ C(a, b) 7→ φ(g) ∈ C(0, 1) is linear and isometric, because
‖φ(g)‖∞ = sup0≤t≤1 |g(ta + (1 − t)b)| = supa≤s≤b |g(s)| = ‖g‖∞. Similarly, by setting, for
f ∈ C(0, 1), ψ(f); s ∈ [a, b] 7→ f((s−a)/(b−a)), ψ : C(0, 1)→ C(a, b) is also linear and isometric.
In addition, ψ ◦φ(g) = g and φ ◦ψ(f) = f as the reader is invited to check. Therefore ψ = φ−1.
Since the image of a polynomial by φ or by ψ is a polynomial, the Theorem 3 shows that the
conclusion holds. 2

2.3. The Space L2([a, b], ρ). Let −∞ < a < b < +∞ be two real numbers and let ρ : [a, b] →
[0,+∞) be a measurable function such that

∫ b
a ρ(s)ds < ∞ and such that the set of point on

which ρ vanishes has zero Lebesgue measure. Then an inner product is defined on C(a, b) by
setting

(f, g)
def
=

∫ b

a
f(s)g(s) ρ(s) ds .

The reader is invited to check that C(a, b) becomes an inner product space, in particular in
proving that (f, f) = 0 ⇒ f = 0. Let the corresponding norm be denoted by

‖f‖2 = ‖f‖L2(ρ)
def
= (f, f)1/2 .

The two norms ‖ · ‖∞ and ‖ · ‖L2(ρ) define two topologies. However, while C(a, b) is complete
for the first one, it is not complete for the other one. Hence these two topologies are NOT
equivalent. Nevertheless the following holds

Proposition 1. Let f ∈ C(a, b). Then

‖f‖L2(ρ) ≤ ‖f‖∞
(∫ b

a
ρ(s) ds

)1/2

.

In particular, any uniformly convergent sequence is converging in the norm ‖ · ‖L2(ρ).

Proof: For indeed

‖f‖2L2(ρ) =

∫ b

a
|f(s)|2 ρ(s) ds ≤ ‖f‖2∞

∫ b

a
ρ(s) ds .

Taking the square root of both sides gives the result. Hence if (fn)n∈N is a uniformly convergent
sequence, namely there is f ∈ C(a, b) such that limn→∞ ‖f − fn‖∞ = 0, then
limn→∞‖f − fn‖2L2(ρ) = 0. However the converse is not true in general. 2

Definition 1. The completion of C(a, b) with respect to the inner product topology defined by ρ
is denoted L2([a, b], ρ).

Like for L2([0, 1]), any element of the completion is an equivalent class of measurable functions

h such that
∫ b
a |h(s)|2 ρ(s) ds <∞ modulo the addition of a function vanishing on a set of zero

Lebesgue measure.
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Theorem 4. The polynomials on [a, b] are dense in the Hilbert space L2([a, b], ρ).

Proof: If h ∈ L2([a, b], ρ), by construction, for any ε > 0 there is f ∈ C(a, b) such that
‖h− f‖2 ≤ ε/2. Thanks to Theorem 3 and its Corollary 1, it follows that there is a polynomial
P such that C ‖f − P‖∞ ≤ ε/2 if C denotes the positive constant defined by

C2 =

∫ b

a
ρ(s) ds .

Using Proposition 1, it follows that ‖h−P‖2 ≤ ε. Since ε can be chosen as small as wished, the
conclusion holds. 2

3. Orthogonal Polynomials

Thanks to the Theorem 4, it follows that, if Xn denotes the map Xn : s ∈ [a, b] 7→ sn ∈ R ⊂ C,
the family (Xn)∞n=0 is linearly independent and generates a dense linear subspace of L2([a, b], ρ).
The purpose of this section is to apply the Gram-Schmidt procedure to this family. This will
lead to an orthonormal family (pn)∞n=0 of polynomials. The properties of these polynomials will
be described. To simplify the notations, H will denote the space L2([a, b], ρ) and the notation
‖f‖2 will be used instead of ‖f‖L2(ρ). All along this Section the following definition will be used

Definition 2. A polynomial is called monic whenever its coefficient of highest degree is equal
to 1. Hence this can be expressed as P (s) = sn +O(sn−1).

3.1. Construction of an Orthogonal Family. Let the Gram-Schmidt procedure be applied
to the family of monomials. By definition, monomials are linearly independent.

Step 0: Following the Gram-Schmidt procedure, let P0 = X0 be the constant function equal to
1. It is the unique monic polynomial of degree zero. Then p0 = P0/C is a unit vector in H. It
is worth remarking that ‖P0‖2 = C.

Step 1: As a warm up, let the step 1 on the Gram-Schmidt procedure be described in detail.
Then, a vector P1 will be obtained as a linear combination of X0, X1 so that (P1, P0) = 0. Hence
if P1 = αX + βP0, this gives

0 = (P1, P0) = α(X,P0) + β(P0, P0) = 0 , ⇒ β = −α (X,P0)

(P0, P0)
.

Consequently

P1 = α (X − aP0) , a =
(X,P0)

(P0, P0)
.

It follows that P1(s) = α(s − a) is a polynomial of degree 1. If P1 is normalized so as to be
monic, it follows that p1 is a unit vector if

p1 =
P1

‖P1‖2
, P1(s) = s− a , a =

1

C2

∫ b

a
sρ(s) ds .

Step 2: Just to understand the procedure, let the second step of the Gram-Schmidt procedure
be described in detail as well. The linear space P1 generated by p0, p1 is the linear space
generated by X0, X1 namely it is exactly the set of all polynomials of degree less that or equal
to 1. By construction P2 is a linear combination of X2 and of p0, p1 namely of X0, X1, X2. Thus
it is a polynomial of degree 2 which is orthogonal to any polynomial of degree 1. By choosing
the normalization of P2 to make it monic, this leads to
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P2(s) = s2 + as+ b , (P2, X) = (P2, X
0) = 0 .

At this point, it is convenient to introduce the n-th moment mn defined by

mn =

∫ b

a
sn ρ(s) ds .

It will be important to remark that each moment is a real number and that the moments of
even order are positive numbers. The previous orthogonality relation can be written as

∫ b

a
(s2 + as+ b)s ρ(s) ds = m3 + am2 + bm1 = 0 ,∫ b

a
(s2 + as+ b) ρ(s) ds = m2 + am1 + bm0 = 0 .

As a preparation for the general step, this set of linear equation can be written in the following
matrix form [

m2 m1

m1 m0

] [
a
b

]
=

[
−m3

−m2

]
Since X0, X1, X2 are linearly independent, it follows that this set of equation as a unique
solution, namely that the square matrix on the l.h.s is invertible, defining P2 in a unique way.
Since all moments are real numbers, it follows that the coefficients a, b defining P − 2 are real
as well, so that P2 is a polynomial with real coefficients. As in previous steps, p2 will be defined
as the corresponding unit vector, namely

p2 =
P2

‖P2‖2
.

Step n: Following the same procedure, Pn is therefore a monic polynomial of degree n which
will be written as

Pn(s) = sn + a1s
n−1 + · · ·+ an−1s+ an .

The orthogonality relations (Pn, X
k) = 0 for 0 ≤ k ≤ n− 1 lead to the equations

mn+k + a1mn+k−1 + · · · anmk = 0 , 0 ≤ k ≤ n− 1 .

Equivalently, these linear equations can be written in matrix form as follows
m2n−2 m2n−3 · · · mn−1
m2n−3 m2n−4 · · · mn−2

...
...

. . .
...

mn−1 mn−2 · · · m0



a1
a2
...
an

 =


−m2n−1
−m2n−2

...
−mn


Again, the square matrix on the left is real valued and invertible, leading to a unique solution
for Pn as a monic polnomial of degree n with real coefficients. In much the same way, pn denotes
the corresponding unit vector

pn =
Pn
‖Pn‖2

.
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Conclusion: the family (Pn)n∈N is made of monic polynomials with deg(Pn) = n and

(Pn, Pm) = (Pm, Pn) = 0 , if n 6= m.

Let Pn denote the linear subspace generated by X0, X,X2, · · · , Xn. Then Pn is nothing but
the subspace of polynomials of degree less than or equal to n and P0, P1, · · · , Pn represents an
orthogonal basis in Pn. In particular, Pn is orthogonal to any polynomial of degree less than n.
Moreover, this family is unique with this property. Correspondingly the normalization of each of
these monic polynomials leads to the orthonormal family (pn)n∈N which has similar properties.
The orthogonal projection Πn onto Pn can be written in either of the following two forms

Πnf =

n∑
k=0

(f, pk) pk =

n∑
k=0

(f, Pk)

(Pk, Pk)
Pk .

3.2. Recursion Relation. The construction made in the previous section gives an algorithm
to built the family of orthogonal monic polynomials in terms of the moments. However, using
the orthogonality property leads to interesting relations. The first important one is given by the
following recursion formula

Theorem 5. Let (Pn)∞n=0 be the orthogonal family of monic polynomial defined by the Hilbert
space H = L2([a, b], ρ). Then there is a sequence (an)∞n=0 of real numbers and a sequence (bn)∞n=1

of positive real numbers such that

Pn+1(s) = (s− an)Pn(s)− bnPn−1(s) , n > 0 ,

with

an =
(sPn, Pn)

‖Pn‖2
, bn =

‖Pn‖2

‖Pn−1‖2
.

Proof: The polynomial sPn(s) = sn+1 +O(sn) is a monic polynomial of degree (n+1). Hence,
it can be uniquely written in the orthogonal basis of Pn+1 as

sPn = Pn+1 + anPn + bnPn−1 +

n−2∑
k=0

ckPk .

In particular, for k ≤ n− 2

ck(Pk, Pk) = (sPn, Pk) =

∫ b

a
s Pn(s)Pk(s) ρ(s) ds = (Pn, sPk) .

Since sPk is a polynomial of degree k + 1 ≤ n − 1 it is orthogonal to Pn so that ck = 0. In a
similar way

an(Pn, Pn) = (sPn, Pn) =

∫ b

a
s |Pn(s)|2 ρ(s) ds ∈ R .

Moreover,

bn(Pn−1, Pn−1) = (sPn, Pn−1) = (Pn, sPn−1) .

Since sPn−1 is a monic polynomial of degree n, it can be written as sPn−1 = Pn + O(sn−1).
Hence, since Pn is orthogonal to Pn−1 it follows that (Pn, sPn−1) = (Pn, Pn). Therefore
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bn =
‖Pn‖2

‖Pn−1‖2
> 0 .

This gives the result. 2

3.3. Symmetries. The most common symmetry appearing in a space like L2([a, b], ρ) is the
parity around the origin. This happens whenever a = −b and ρ(−s) = ρ(s). In this case the
following holds

Proposition 2. Let [a, b] = [−b, b] be symmetric around the origin and let ρ be even, namely
ρ(−s) = ρ(s). Then

Pn(−s) = (1)nPn(s) .

Proof: Writing Pn(s) = sn+O(sn−1) it follows that Qn(s)
def
= (−1)nPn(−s) is monic. Moreover

(Qn, X
k) =

∫ b

−b
(−1)nPn(−s)sk rho(s) ds = (−1)k

∫ b

−b
Pn(s)sk rho(s) ds = 0 ,

by proceeding to the change of variable s → −s. Hence, thanks to the uniqueness of such a
family (see Section 3.1, Conclusion), it follows that Qn = Pn. 2

The reader is invited to check the following two results.

Proposition 3. Let [a, b] = [−b, b] be symmetric around the origin and let rho be even, namely
ρ(−s) = ρ(s). Then the moments satisfy

m2n+1 = 0 , n ≥ 0 .

In addition

P2n(s) = Qn(s2) , P2n+1(s) = sRn(s2)|, ,
where Qn, Rn are monic polynomials of degree n.

It has been seen that the interval [a, b] can be transformed into [0, 1] by the map s 7→ t =
(s − a)/(b − a). Correspondingly, ρ(s) can be written as ρ(tb + (1 − t)a) while ds = (b − a)dt.
Hence setting

ρ0(t) = (b− a)ρ(tb+ (1− t)a) ,

and for f ∈ L2([a, b], ρ)

Uf(t) = f(tb+ (1− t)a) ,

it follows that U : L2([a, b], ρ)→ L2([0, 1], ρ0) is a linear unitary transformation since it is linear
and satisfies

(Uf,Ug)
def
=

∫ 1

0
Uf(t)Ug(t) ρ0(t) dt =

∫ b

a
f(s)g(s) ρ(s) ds = (f, g) .

By construction any linear transformation change an orthonormal basis into another one and
an orthogonal family into another one. Hence the family (UPn)∞n=0 is orthogonal and (Upn)∞n=0

is an orthonormal basis in L2([0, 1], ρ0). On the other hand, it is easy to check that, since the
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transformation s→ t is a polynomial of degree one, the function UPn is a polynomial of degree
n as well such that

UPn(t) = Pn(tb+ (1− t)a) = (b− a)ntn +O(tn−1) .

To make UPn monic, it is necessary to divide it by (b− a)−n, leading to

Proposition 4. Let ψ(s) = t = (s − a)/(b − a) and let ρ0(t) = ρ(tb + (1 − t)a)(b − a). Then,
if (Pn)∞n=0 denotes the family of monic orthogonal polynomials in H = L2([a, b], ρ), the unique
orthogonal family of monic polynomials in the space L2([0, 1], ρ0) is given by

Qn(t) =
Pn
(
tb+ (1− t)a

)
(b− a)n

.

Proof: The reader is invited to make the proof. 2

4. An Example: the Legendre Polynomials

Legendre’s polynomials correspond to the symmetric interval [a, b] = [−1,+1] with ρ(s) = 1.
They are usually denoted by Pn, but the normalization may change from reference to another.
In the present case, Pn will denote the monic Legendre polynomial of degree n. Because of the
symmetry, it follows that Pn has the parity of n. An elementary calculation gives the moments
(m2n+1 = 0) and the first polynomials as

m2n =
2

2n+ 1
, P0 = 1 , P1 = s , P2 = s2 − 1

3
, P3 = s(s2 − 3

5
) .

4.1. Differential Equation. The first important result is the differential equation

Theorem 6. The Legendre polynomials solve the differential equation

d

ds
(1− s2) d

ds
Pn + n(n+ 1)Pn = 0 . (Legendre’s equation)

Proof: An elementary calculation shows that Tn = ∂s (1− s2)∂s Pn is a polynomial of degree n
such that

Tn = −n(n+ 1)sn +O(sn−2) ,

it follows easily from Proposition 3. It follows that the decomposition onto the monic orthogonal
basis (Pn)∞n=0 must have the form

Tn = −n(n+ 1)Pn +
n−1∑
k=0

ckPk .

The orthogonality gives ck‖Pk‖2 = (Tn, Pk). The latter can be written as

(Tn, Pk) =

∫ 1

−1

d

ds
(1− s2) d

ds
Pn Pk(s) ds .

An integration by part gives

(Tn, Pk) = (1− s2)Pk(s)
d

ds
Pn(s)

∣∣∣s=1

s=−1
−
∫ 1

−1
(1− s2) d

ds
Pn

d

ds
Pk(s) ds .
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Since (1− s2) = 0 for s = ±1, the first term on the right hand side vanishes. Similarly, another
integration by part leads to

(Tn, Pk) =

∫ 1

−1
Pn

d

ds
(1− s2) d

ds
Pk(s) ds = (Pn, Tk) .

Since Tk is a polynomial of degree k < n, it follows that (Pn, Tk) = 0 leading to ck = 0 whenever
0 ≤ k ≤ n− 1. This gives the result. 2

The previous Theorem allows to compute all the coefficients of the polynomial Pn as shown
below

Proposition 5. Setting a0 = 1, the monic Legendre polynomials are given by

(3) Pn =

[n/2]∑
k=0

(−1)kak s
n−2k , with ak =

n!2

k!(n− k)!(n− 2k)!

2(n− k)!

(2n)!
.

Proof: The Legendre polynomial Pn being either odd or even, depending upon the parity of n
can be written as

Pn(s) =

[n/2]∑
k=0

(−1)kak s
n−2k

Its derivative is therefore given by

dPn
ds

=

[(n−1)/2]∑
k=0

(−1)k(n− 2k) ak s
n−1−2k

Multiplying it by −s2 can be reorganized as follows

−s2 dPn
ds

= −nsn+1 +

[(n−1)/2]∑
k=1

(−1)k+1(n− 2k) ak s
n+1−2k

= −nsn+1 +

[(n−3)/2]∑
k=0

(−1)k(n− 2− 2k) ak+1 s
n−1−2k .

Adding it to the derivative gives

(1− s2)dPn
ds

= −nsn+1 +

[(n−3)/2]∑
k=0

(−1)k
[
(n− 2k) ak + (n− 2− 2k) ak+1

]
sn−1−2k +R ,

where R = (−1)m−12am−1s if n = 2m and R = (−1)mam if n = 2m+ 1. Deriving another time
gives

d

ds
(1−s2)dPn

ds
= −n(n+1)sn+

[(n−3)/2]∑
k=0

(−1)k(n−1−2k)
[
(n−2k) ak+(n−2−2k) ak+1

]
sn−2−2k+R′

This can be written in the following form
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d

ds
(1− s2)dPn

ds
= −n(n+ 1)sn +

[(n−1)/2]∑
k=1

(−1)k−1(n+ 1− 2k)
[
(n+ 2− 2k) ak−1 + (n− 2k) ak

]
sn−2k +R′

d

ds
(1−s2)dPn

ds
= −n(n+1)sn+

[(n−1)/2]∑
k=1

(−1)k−1(n+1−2k)
[
(n+2−2k) ak−1+(n−2k) ak

]
sn−2k+R′

Adding n(n+ 1)Pn leads to the following recursion formula

(n+ 1− 2k)
[
(n+ 2− 2k) ak−1 + (n− 2k) ak

]
= n(n+ 1)ak .

Hence

ak =
(n+ 1− 2k)(n+ 2− 2k)

n(n+ 1)− (n− 2k)(n+ 1− 2k)
ak−1 =

Nk

Dk
.

Since a0 = 1 this gives

ak =
k∏
j=1

(n+ 2− 2j)(n+ 1− 2j)

n(n+ 1)− (n− 2j)(n+ 1− 2j)
.

The numerator can be written as

Nk = n(n− 1) · · · (n+ 2− k)(n+ 1− k) =
n!

(n− 2k)!
.

The denominator involves the following formula n(n+ 1)−m(m+ 1) = (n−m)(n+m+ 1) with
m = n− 2k. Thus

Dk =

k∏
j=1

2k(2n− (2k − 1)) = 2kk!

k∏
j=1

(2n− (2j − 1)) .

The previous expression involves the following product

k∏
j=1

(2n− (2j − 1)) =

∏n
j=1(2j − 1)∏n−k
j=1 (2j − 1)

.

But

n∏
j=1

(2j − 1) =

∏n
j=1 2j(2j − 1)

2nn!
=

(2n)!

2nn!
.

Inserting in the expression of Dk leads to

Dk = 2kk!
(2n)!

2nn!

2n−k(n− k)!

(2(n− k))!
=

(n− k)!

n!

(2n)!

2(n− k)!
.

Finally this gives
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ak =
n!2

k!(n− k)!(n− 2k)!

2(n− k)!

(2n)!
.

2

4.2. Recursion Formula and Norm. The Proposition 5 leads to the following result

Proposition 6. The monic Legendre polynomials satisfy the following recursion formula

(4) Pn+1(s) = sPn(s)− n2

4n2 − 1
Pn−1(s) .

Proof: The Theorem 5 and the symmetry around s = 0 imply the existence of a sequence bn
of positive numbers such that

Pn+1(s) = sPn(s)− bnPn−1 .
Since each polynomial is monic, it follows that bn = a1(n+ 1)− a1(n), where a1(n) denotes the
coefficient of sn−2 in Pn. Thanks to Proposition 5,

a1(n) =
n(n− 1)

2(2n− 1)
, ⇒ a1(n+ 1) =

n(n+ 1)

2(2n+ 1)
.

It follows immediately that

bn =

(
n(n+ 1)

2(2n+ 1)
− n(n− 1)

2(2n− 1)

)
=

n2

4n2 − 1
,

2

Proposition 7. The Hilbert norm of the monic Legendre polynomials is given by

(5) ‖Pn‖ =

(∫ +1

−1
Pn(s)2ds

)1/2

=

√
2

2n+ 1

2nn!2

(2n)!

Proof: The formula for bn given in Theorem 5 leads to

‖Pn‖ =

n∏
k=1

b
1/2
k ‖P0‖ .

Since ‖P0‖2 =
∫ +1
−1 ds = 2 this gives

‖Pn‖ =
√

2
1 · 2 · · · (n− 1) · n√

(1 · 3)(3 · 5) · · · ((2n− 3) · (2n− 1))((2n− 1) · (2n+ 1))
.

Hence the prefactor
√

2/(2n+ 1) can be extracted and the product of the first n odd numbers
is given by

1 · 3 · · · (2n− 1) =
(2n)!

2nn!
,

leading to the formula. 2
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4.3. Generating Functional. Another tool of calculation is provided by the generating func-
tional. Typically it is a function given as a power series by

G(s, x) =
∞∑
n=0

Pn(s) xn .

It is worth remarking, however, that the normalization of the polynomials can be chosen in
another way if this is convenient. This leads to an expression of the form

(6) G(s, x) =
∞∑
n=0

cn Pn(s) xn ,

where the constant cn can be chosen at will, if this gives G an expression easy to compute.
Whatever the choice of these constants, though, G satisfies the following partial differential
equation

Proposition 8. For any choice of the constant cn the generating functional G satisfies the
following equation {

∂s(1− s2)∂s + x∂2x x
}
G = 0 .

Conversely any solution of this equation that can be expanded in powers of x and s has the form
given in eq. (6)

Proof: (i) By definition

∂s(1− s2)∂s G =
∞∑
n=0

cn
d

ds
(1− s2)dPn

ds
xn .

Thanks to Theorem 6, this is nothing but

∂s(1− s2)∂s G = −
∞∑
n=0

cn n(n+ 1)Pn x
n .

Then it is enough to remark that x∂2x x
n+1 = n(n+ 1)xn to get the result.

(ii) Conversely, the same argument shows that if G(s, x) =
∑∞

n=0Qn(s) xn for some function
Qn(s), then each Qn is a solution of

d

ds
(1− s2)dQn

ds
+ n(n+ 1)Qn(s) = 0 .

The calculation made in the proof of Proposition 5 shows that Qn must be proportional to Pn.
2

A special generating functional was found in the past, given as follows

Proposition 9. The function

G(s, x) =
1√

1− 2sx+ x2
,

is a solution of {
∂s(1− s2)∂s + x∂2x x

}
G = 0 .
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Proof: Differentiating G w.r.t s or x gives

∂sG = xG3 , ∂xG = (s− x)G3

Hence

∂s(1− s2) xG3 = −2sxG3 + 3x2(1− s2)G5 ,

x∂2xxG = x(2s− 3x)G3 + 3x2(s− x)2G5

Adding these two term and remarking that G3 = (1− 2sx+ x2)G5 gives

{
∂s(1− s2)∂s + x∂2x x

}
G =

[
− 3x2(1− 2sx+ x2) + 3x2(1− s2 + (s− x)2)

]
G5 = 0 .

2

Thanks to Proposition 8, it follows that there are constant cn such that

(7)
1√

1− 2sx+ x2
=

∞∑
n=0

cn Pn(s)xn .

In order to compute the cn’s, it is worth expanding the l.h.s. in power series. Setting u = 2sx−x2
the l.h.s. is given by

1√
1− u

=

∞∑
l=0

(2l)!

22l (l!)2
ul .

This series converges absolutely for |u| < 1. Then

ul =
l∑

k=0

(
l
k

)
2ksk(−1)l−k x2l−k .

Inserting into the infinite series, and using the variables k and m = l − k leads to the double
sum

G =
∑
k,m≥0

2(m+ k)!

22m+k(m+ k)!m!k!
(−1)m sk x2m+k .

Setting n = 2m+ k permits to group the terms proportional to xn. This gives

G =
∞∑
n=0

xn
[n/2]∑
m=0

2(n−m)!

2n(n−m)!m!(n− 2m)!
(−1)m sn−2m

The coefficient of xn is indeed a polynomial Qn of degree n, having the parity of n. Its coefficient
of highest degree is

Qn =
(2n)!

2n(n!)2
sn +O(sn−2) .

On the other hand Qn is proportional to Pn which is monic. Consequently this coefficient is
exactly the constant cn that was expected. To summarize
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Theorem 7. The following formula holds for the monic Legendre polynomials

(8)
1√

1− 2sx+ x2
=

∞∑
n=0

(2n)!

2n(n!)2
Pn(s)xn .

Thanks to this formula, it becomes possible to get few more results such as

Proposition 10. The monic Legendre polynomials satisfy

(9) Pn(1) =
2n(n!)2

(2n)!

Proof: By setting s = 1 in eq. (8) the l.h.s. becomes (1−x)−1 =
∑

n≥0 x
n, giving the result. 2

Another consequence is the following

Proposition 11. The following formula holds

(10)

∫ +1

−1

ds√
(1− 2sx+ x2)(1− 2sy + y2)

=
1
√
xy

ln

(
1 +
√
xy

1−√xy

)
Proof: The eq. (8) can be written in term of the normalized polynomials pn = Pn/‖Pn‖ as
follows

(11)
1√

1− 2sx+ x2
=
∞∑
n=0

√
2

2n+ 1
pn(s)xn , pn =

Pn
‖Pn‖

.

Hence, the orthonormality of the family (pn)∞n=0 leads to∫ +1

−1

ds√
(1− 2sx+ x2)(1− 2sy + y2)

= 2

∞∑
n=0

(xy)n

2n+ 1
=

1
√
xy

ln

(
1 +
√
xy

1−√xy

)
2
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