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Abstract

This paper analyzes the scattering theory for periodic tight-binding Hamiltonians perturbed
by a finite range impurity. The classical energy gradient flow is used to construct a conjugate
(or dilation) operator to the unperturbed Hamiltonian. For dimension d ≥ 3 the wave operator
is given by an explicit formula in terms of this dilation operator, the free resolvent and the
perturbation. From this formula the scattering and time delay operators can be read off. Using
the index theorem approach, a Levinson theorem is proved which also holds in presence of
embedded eigenvalues and threshold singularities.

1 Introduction

The purpose of this work is to present the scattering theory for a quantum particle described by a
tight-binding Hamiltonian H = H0 + V acting on the Hilbert space `2(Zd) where H0 is a periodic
operator with a single band and V is a finite rank perturbation. Most of the present work is focusing
on the case of dimension d ≥ 3. All along this paper, it will be assumed that the Fourier transform of
H0 acts on L2(Td) as a multiplication operator by a real analytic Morse function E(k) having only one
maximum and one minimum. Operators of this type appear in solid state physics as effective one-
band Hamiltonians for electrons or holes in periodic media. The analyticity reflects the exponential
decay of interactions and the Morse condition is generic.

1.1 Main Results

Scattering theory for a Schrödinger operator with a periodic potential has already been considered
[New2, BY, GN]. The above scattering problem has also been addressed in the physics literature,
for example in [Eco]. The present work is going further. Initially, it was motivated by the remark by
Kellendonk and Richard [KR1] that Levinson’s theorem [Lev] relating the number of bound states
to the total scattering phase can be interpreted as a special case of the Atyiah-Singer index theorem.
As it turns out, this nice basic idea requires a substantial amount of technicalities when it comes
to mathematical justification [KR2, KR3, KR4]. For indeed, the global character of Levinson’s
theorem requires several technical steps. First, a complete control on the nature of the singularities
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of the Green function of H0 is needed, a task that is easy on the continuum, but more involved in
the present case. In addition, it requires a conjugate operator to H0 in order to shift the energy,
replacing the dilation operator used for the continuum situation. Moreover, the potential term V may
create embedded eigenvalues and threshold singularities that must be analyzed thoroughly since they
contribute to Levinson’s theorem. At last, for the index theorem to apply, it is necessary to prove that
both the wave operator and the scattering matrix can be expressed as suitable continuous function
of the energy and dilation operators. This was achieved in [KR3] through an explicit calculation in
dimension d = 1 using the techniques of [Jen]. In higher dimension [KR4], the explicit calculation
turns out to be harder, but it is possible to prove sufficient regularity of the wave operators and the
scattering matrix. Unfortunately, the work [BY] is insufficient to implement this program completely
for the class of models considered here. The present paper is supplementing these points.

In the light of the previous introduction, the main results of the paper can be summarized as
follows:

• A lattice analog of the dilation operator is constructed (see Theorem 1). It is a self-adjoint
unbounded operator A such that ı[H0, A] = F (H0) where F is a positive function on the
spectrum of H0 vanishing only at the band edges.

• Explicit expressions for the wave operators, the scattering matrix and the time delay operators
are obtained in terms of H0, V and A (see Theorem 2, Theorem 3 and Theorem 4).

• A series of results concerning the existence of embedded eigenvalues and threshold singularities.

• A Levinson type theorem is derived which is now briefly described (see Theorem 5 for details).
The essential spectrum of H is the spectrum [E−, E+] of H0 and E± are called the band
edges or thresholds. Let Ppp be the eigenprojection on the eigenvalues N be the total number
of eigenvalues, including the embedded and the threshold eigenvalues (the latter have to be
distinguished from threshold resonances). Further let T = −ıS−1[A, S] be the time delay
operator seen as acting on `2(Zd). Finally let m± ∈ {0, 1} be the degeneracies of the threshold
resonances at E± also called half-bound states singularities (higher degeneracies are possible,
but not dealt with here). Then for d = 3 and isotropic extrema of E ,

1

2ıπ
Tr
(
S−1[A, S]

)
+ Tr(Ppp) = − m+

2
− m−

2
. (1)

For d ≥ 5 it is proved that always m± = 0 and that (1) holds. For d = 4, (1) is proved under
the hypothesis that m± = 0.

As already pointed out, this paper is restricted to dimension d ≥ 3. Dimensions d = 1 and d = 2
require a detailed asymptotic expansions of the free Green function near the band edges [New1,
BGDW, KR3]. The one-dimensional case has been treated in [CK, HKS]. The case d = 2 will be
addressed in a future publication.
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While most of these results are technically new, similar results have been already obtained in
the past. The scattering problem in Rd with standard Laplacian perturbed by a decaying potential
together with a proof of Levinson’s theorem can be found in standard textbooks such as [New1, RS].
In this situation, also threshold resonances have been analyzed in details (see [Bol] for a review). The
scattering of an electron in a periodic potential by an impurity has been considered by physicists for
a long time, in connection with the transport properties of semiconductiors. This theory is based
on the KKR equations (for Korriga, Kohn and Rostoker) and in this context Levinson’s theorem
given in equation (1) above is also known under the name of Friedel sum rule. This was investigated
by Newton [New2] for d = 3 with an impurity potential that could lead to threshold resonances,
but not embedded eigenvalues. Levinson’s theorem for periodic potentials in dimension d = 1 was
proved by Firsova [Fir]. The mathematical aspects of scattering theory in a periodic potential has
been considered by Birman and Yafaev [BY] and bears many similarities with the present approach.
However, the latter work does not deal with the critical points of the band functions, and hence
does not lead to a proof of Levinson’s theorem. The scattering of a lattice electron by a localized
impurity is also addressed in the book by Economou [Eco], however, the explicit formulas obtained
in the present work for the scattering matrix and the wave operators are missing. The problem of
embedded eigenvalues has long been considered as irrelevant or non-generic. However, as shown in
Example 4 below, such a situation may occur in practical devices, in particular, when a compact
part of the lattice is inaccessible to an electron coming from the outside. The eigenvalues of the
Hamiltonian inside have an influence on the scattering outside in various ways, as can be seen in
equation (1). An analogous effect occurs for microwaves reflected by a cavity, as was shown, for
instance, in [DSF].

1.2 Strategy of proofs

As suggested by the formula ı[H0, A] = F (H0), the conjugate operator A is the generator of an energy
shift. For its construction the classical energy gradient flow is slowed down near the band edges which
are also called thresholds. This flow can be implemented as a strongly continuous one-parameter
group of unitary operators in the Hilbert space and A is then simply the generator of this group. The
unitary implementation of a vector field has already been carried out in [HS,ABG], however, these
constructions excluded energy surfaces with critical points. Removing this constraint is crucial for
the proof of Levinson’s theorem and this is probably the main conceptual contribution of this paper
to the scattering theory in periodic lattices. The proof also covers dimension d = 2.

The introduction of the conjugate operator A is closely linked to an important tool of calculation
used in this paper, namely the rescaled energy and Fermi surface (REF) representation giving an ad-
equate spectral representation of both H0 and A. It shows that the Hilbert space `2(Zd) is isomorphic
to L2(R) ⊗ L2(Σ, ν) where R is a rescaled energy variable and Σ is a reference Fermi surface given
by some level set of E furnished with a Riemannian volume ν. The influence of the critical points on
the dynamics defined by A lies on a set of zero Lebesgue measure explaining why the unitary group
eıtA is globally defined. While Morse’s theory shows that the topology of the level sets changes at
the passage through a critical value, the previous result, on the opposite, shows that the topology
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of the Fermi surface does not play any role for the Hilbert space isomorphism. Changing H0 into
B = f(H0), for a suitable function f such that ı[B,A] = 1, leads to a representation where B is the
multiplication by a variable b ∈ R, called the rescaled energy while A becomes the derivative −ı∂b
and acts as an infinitesimal rescaled energy shift.

Given the REF representation, it is possible to compute all standard objects of scattering theory
explicitly. In order to limit the technical difficulties, this work will be restricted to dimension d ≥ 3
and to a compactly supported perturbation. The wave operator, minus the identity, is then an
explicit continuous function in A and B with values in the algebra of compact operators on L2(Σ, ν).
From this formula and the invariance principle, an expression for the on-shell scattering matrix is
then readily deduced. Up to an explicit partial isometry, it is a finite dimensional unitary matrix
expressed in terms of the perturbation V and the Green function of H0. The spectral property of
the time delay operator linking it to the resolvent also follows form this analysis. This allows to
give a first short proof of Levinson’s theorem by a contour integration argument when there are no
embedded eigenvalues and no threshold singularities.

However, both threshold singularities and embedded eigenvalues may occur for adequate choices
of V , sometimes with physical meaning. This situation is covered by the second proof of Levinson’s
theorem which follows closely the K-theoretic arguments of Kellendonk and Richard [KR1, KR2].
Following these authors, a C∗-algebra E is generated by continuous functions of A and of B with
values in the compact operators on L2(Σ, ν) and having well-defined limits at ±∞ which coincide in
the four corners A = ±∞ and B = ±∞. It contains the ideal J of those functions vanishing at ∞
and the extension is precisely by the C∗-algebra A of operators fibered over A or B, again coinciding
in the four corners. A large amount of effort is then dedicated to proving that the wave operator
belongs to the Toeplitz extension E, even when embedded eigenvalues and threshold singularities are
present. It follows that the wave operator is a lift of the scattering operator which combined with
contributions stemming from the thresholds is an element of A. This leads to a K-theoretic version
of the proof of Levinson’s theorem.

Notations: As usual, |A| = (A∗A)
1
2 , <eA = 1

2
(A+A∗) and =mA = 1

2ı
(A−A∗) for any operator A.

Furthermore, throughout there is a rescaled energy variable b = f(E) associated with the bijection
f from the spectrum of the unperturbed operator to R which is defined in (5) below. For objects
depending on energy both E and b will be used as indices, for example Pb = PE, Πb = ΠE, Cb = CE
and so on.

Acknowledgments: We thank A. Knauf, S. Golenia, S. Richard and J. Kellendonk for numerous
comments. The work of J. B. was support in part by NSF Grant No. 0600956 and 0901514, that of
H. S.-B. in part by the DFG.
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2 Analysis of the unperturbed lattice Hamiltonian

2.1 Unperturbed Hamiltonian and its energy band

The tight-binding Hamiltonians considered in this work act on the Hilbert space `2(Zd) of square
summable sequences of complex numbers indexed by the d-dimensional lattice Zd. The free Hamil-
tonian H0 on `2(Zd) is supposed to be of the form

〈n |H0 φ〉 =
∑
m∈Zd

En−m 〈m|φ〉 , φ ∈ `2(Zd) , (2)

where the En’s are the Fourier coefficients of a real-analytic real-valued function E(k) =
∑

n∈Zd e
ıknEn

on the d-dimensional torus Td = Rd/(2πZd). Hence we restrict ourselves to a free operator with
a single band. As H0 is translation invariant, it is diagonalized by the discrete Fourier transform
F : `2(Zd) → L2(Td), where L2(Td) is the Hilbert space of square integrable functions on Td. It is
densely defined by

(Fφ)(k) =
1

(2π)
d
2

∑
n∈Zd

eıkn 〈n|φ〉 .

and is unitary. Now Ĥ0 = FH0F∗ is a multiplication operator on L2(Td) by the function E . The
main hypothesis on H0 are expressed in terms of this function E . The set of critical points S∗ ⊂ Td
at which the gradient ∇E w.r.t. the euclidean metric vanishes is finite due to the analyticity of E
and each critical point is supposed to be non-degenerate, namely for any k∗ ∈ S∗ the Hessian E ′′(k∗)
is a real symmetric invertible d × d matrix. In other words, E is supposed to be a so-called Morse
function [Nic]. Recall that the index of a critical point k∗ is the number of negative eigenvalues of
E ′′(k∗). Then the Morse inequalities state that the number of critical points with index p is larger
than or equal to the Betti number βp of the torus Td, which is equal to the binomial coefficient d over
p. In particular, there must exist critical points of E with signature p for every p = 0, . . . , d. For the
discrete Laplacian, the energy band E(k) = 2

∑d
j=1 cos(kj) is a Morse function for which the Morse

inequalities become equalities. We also assume that there are only two critical points k∗− and k∗+ of
definite signature corresponding to the minimal and maximal values E− = E(k∗−) and E+ = E(k∗+)
of E . Hence all other critical points k∗ ∈ S∗ are supposed to have critical values E(k∗) in (E−, E+)
and to be of indefinite signature. Note that E(S∗) is the set of all critical values. A spectral interval
is called non-critical if it does not contain any critical value.

2.2 The classical energy flow

Let F : [E−, E+] → R≥0 be a real analytic function vanishing only at the band edges E− and E+

and satisfying F (E − E−) ≤ C|E − E−| and F (E+ − E) ≤ C|E+ − E| for some constant C. Below
we will choose

F (E) = 2
(E − E−)(E+ − E)

E+ − E−
, (3)

5



but this particular choice will only become relevant for the calculation of the wave operators in
Section 3.4. Then let X̂ be the vector field on Td defined by

X̂(k) = F
(
E(k)

) ∇E(k)

|∇E(k)|2
, k ∈ Td . (4)

Apart from the factor F ◦ E , the vector field X̂ is precisely the one used in the standard argument
of Morse theory [Nic] as well as in the proof of the coarea formula [Sak]. As E and F are smooth,
this vector field is smooth away from the set S∗ of critical points. At the critical points k∗± with
extremal energy E(k∗±) = E±, the function k 7→ F (E(k∗± + k)) vanishes linearly by the assumption
on F and hence the vector field has a source or a sink there. At all other critical points with critical
values lying inside the band [E−, E+], the vector field X̂ has a singularity which has to be dealt with

below. Let θb : Td \ S∗ → Td be the flow of X̂, that is, ∂bθb = X̂ ◦ θb and θ0 = id. The somewhat
unconventional choice of b as notation for the time parameter is due to its interpretation as rescaled
energy variable below, which is dual to the spectral parameter a of the dilation operator A. The flow
θb is not complete because an orbit can reach one of the critical points with indefinite signature in a
finite time. Choosing orbits which stay away from these critical points or times which are sufficiently
small, one can calculate the flow of energy along the orbits. By the definition of the vector field X̂,

∂b E(θb(k)) = F (E(θb(k))) .

This equation shows that the flow θb maps constant energy surfaces to constant energy surfaces.
Moreover, the energy flow is governed by a simple ordinary differential equation of first order which
can be integrated. Choosing some reference energy Er ∈ (E−, E+), it leads to the following invertible
function

f(E) =

∫ E

Er

de

F (e)
. (5)

Then b = f(E(θb(k)))− f(E(k)) and

E(θb(k)) = f−1
(
b+ f(E(k))

)
. (6)

If F is given by equation (3) and if Er = (E+ + E−)/2, it gives

f(E) =
1

2
ln

(
E − E−
E+ − E

)
, f−1(b) = Er + ∆ tanh(b) , F (f−1(b)) =

∆

cosh2(b)
, (7)

where ∆ = (E+ − E−)/2. By restricting θb to an adequate subset of Td, a complete flow can be
constructed. Let S be the union of S∗ and of the set of points reaching one of the critical points
k∗ ∈ S∗ in finite time (either positive or negative). It is important to remark that almost all points
reach the maximum and the minimum eventually, but it takes an infinite time to do so. Therefore
the finite time condition is a strong constraint. In fact, S is the union of S∗ and the stable and
unstable manifolds of all critical points of indefinite signature.
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Proposition 1 The set S is compact and has zero Lebesgue measure. The flow θb : Td \ S→ Td \ S
is defined for all b ∈ R, that is, X̂ is complete on Td \ S. In addition, limb→±∞ θb(k) = k∗± for all
k ∈ Td \ S. Furthermore, for any open neighborhood U of S there exists an open subset V ⊂ U which
contains S \ {k∗−, k∗+} and is invariant under the flow θ.

Sketch of a proof. The vector field X̂ is gradient-like in the terminology of [Nic] (it is actually a
gradient vector field). Hence [Nic, Section 2.4] shows that limb→±∞ θb(k) ∈ S∗ and that the stable and
unstable manifolds of all critical points of indefinite signature are locally smooth submanifolds of Td.
For each critical point, the sum of the dimensions of the stable and unstable manifolds is equal to d.
Along the flow on these submanifolds the energy increases with a finite speed, except in neighborhoods
of k∗±. Hence either the submanifolds reach another critical point in a finite time (non-generic) or the
points k∗± in infinite time. Consequently, the points k∗± compactify the stable and unstable manifolds.
As the number of critical points is finite, the set S is compact with zero Lebesgue measure. To prove
the last statement of the proposition, let k∗ be a critical point of indefinite signature. Then let V (k∗)
be an open neighborhood of k∗ contained in U . Then V =

⋃
k∗
⋃
b∈R θb(V (k∗)) is an open set that is

in variant by the flow. A compactness argument can be used to show that V ⊂ U by choosing V (k∗)
sufficiently small. 2

The level set of E corresponding to an energy E ∈ (E−, E+) is defined by

ΣE =
{
k ∈ Td \ S

∣∣∣ E(k) = E
}
.

These level sets will be called the quasi-Fermi surfaces. This terminology is introduced to stress
that ΣE is a strict subset of Fermi surface E−1(E) because the points on the stable and unstable
manifolds of all critical points with indefinite signature are excluded. However, the difference is
only of measure zero. A reference quasi-Fermi surface will be taken at energy Er and denoted by
Σ = ΣEr . Because the singularities are excluded, the sets ΣE are smooth open submanifolds of
Td of codimension 1 which, for d ≥ 2, have several connected components. Now the flow θb maps
these connected components diffeomorphically into each other. By the above arguments, for each
energy E, there is a time b = f(E) such that the flow θb maps the reference quasi-Fermi surface Σ
diffeomorphically into ΣE. Consequently we have:

Proposition 2 For E ∈ (E−, E+), the map θf(E) : Σ→ ΣE is a diffeomorphism.

For our purposes below, we will also need properties of the divergence of X̂. A straightforward
calculation gives

div(X̂)(k) = F ′(E(k)) + F (E(k))

(
∆E(k)

|∇E(k)|2
− 2
〈∇E(k)|E ′′(k)|∇E(k)〉

|∇E(k)|4

)
.

Near a critical point k∗, one has ∇E(k∗ + k) = E ′′(k∗)|k〉+O(k2), leading to

div(X̂)(k∗ + k) = F ′(E(k∗ + k)) + F (E(k∗ + k))

(
Tr(E ′′(k∗))
〈k|E ′′(k∗)2|k〉

− 2
〈k|E ′′(k∗)3|k〉
〈k|E ′′(k∗)2|k〉2

+O(|k|−1)

)
.
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Both F and F ′ are regular, hence |div(X̂)(k∗+k)| ≤ C/|k|2 and thus div(X̂) is an integrable function
for dimension d ≥ 3. Furthermore, near the extrema k∗±, namely at the band edges, E(k∗± + k) =
E(k∗±) + 1

2
〈k|E ′′(k∗±)|k〉+O(|k|3), F ′(E(k∗±+k)) = ∓2 +O(|k|2) and F (E(k∗±+k)) = ∓〈k|E ′′(k∗±)|k〉+

O(|k|3). Therefore, setting

g±(k) =
Tr(E ′′(k∗±)) 〈k|E ′′(k∗±)|k〉 〈k|E ′′(k∗±)2|k〉 − 2 〈k|E ′′(k∗±)|k〉 〈k|E ′′(k∗±)3|k〉

〈k|E ′′(k∗±)2|k〉2
,

leads to

div(X̂)(k∗± + k) = ∓
(
2 + g±(k) +O(|k|)

)
. (8)

The functions g± are homogeneous of degree 0 and can thus be seen as functions on the sphere Sd−1.
In dimension d = 1, one has g±(k) = −1. In higher dimension, g±(k) = d− 2 whenever E ′′(k∗±) is a
multiple of the identity (isotropy of the extrema). Otherwise g± are non-trivial.

2.3 Construction of the dilation operator

The aim of this section is the construction of an unbounded conjugate (or dilation) operator A such

that ı[A,H0] = F (H0) where F is as above. The basic idea is to implement the flow θb of X̂ in
L2(Td) as a strongly continuous group of unitaries. Let D denote the set of smooth functions on Td
vanishing in some neighborhood of S. Since S has zero Lebesgue measure and is compact, D is dense
in L2(Td). Furthermore, Proposition 1 implies that every function in D vanishes on a flow invariant
open subset containing S \ {k∗−, k∗+}. Hence for φ ∈ D, the following operator can be defined

(Wb φ)(k) = exp

(
1

2

∫ b

0

du div(X̂)(θu(k))

)
φ(θb(k)) , (9)

because the singularities of X̂ are not reached, due to the restriction on the support of φ. The
unitarity of Wb follows from the change of variables k 7→ θb(k) and from the Jacobian formula

det(θ′b(k)) = exp

(∫ b

0

du div(X̂)(θu(k))

)
. (10)

This latter relation follows from integrating ∂b ln det(θ′b(k)) = div(X̂)(θb(k)) with the initial condition
det(θ′0) = 1. Furthermore, the group property θb ◦ θu = θb+u immediately implies WbWu =Wb+u. It
can be checked, by a direct calculation, that ‖Wbφ‖ = ‖φ‖ for φ ∈ D. In addition, using the Lebesgue
dominated convergence theorem, limb→0 ‖Wbφ‖ = ‖φ‖ for φ ∈ D. It follows, from a 3ε argument,
that Wb can be extended as a one-parameter, strongly continuous group of unitary operators on
L2(Td). By Stone’s theorem the generator Â = 1

ı
∂bWb|b=0 is self-adjoint and Wb = exp(ıbÂ). Also

[BR, Corollary 3.1.7] implies that D is a core for Â because D is left invariant under Wb. The
derivation of equation (9) leads to
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Â φ =
1

ı

(
X̂(φ) +

1

2
div(X̂)φ

)
, (11)

where X̂(φ) = 〈X̂|∇〉φ is the action of the vector field on the function φ ∈ D. Note that the

multiplicative (zero order) operator 1
2

div(X̂) is needed to make the r.h.s. of (11) symmetric w.r.t.
the scalar product in L2(Td). The desired commutator property ı[A,H0] = F (H0) now follows

directly from (11) because ı[Â, Ĥ0] = X̂(E) = F (Ĥ0). This can be summarized as follows:

Theorem 1 Let E be a Morse function with only one maximum and one local minimum and let F
be a smooth function vanishing linearly at the two extremal values E− and E+ and nowhere else. Let
Wb be defined by (9) for φ ∈ D and with X̂ and θb given by (4) and its flow. Then Wb is a strongly

continuous one-parameter group of unitary operators on L2(Td). Its generator Â = 1
ı
∂bWb|b=0 is

self-adjoint with core D and satisfies

ı[Â, Ĥ0] = F (Ĥ0) , ı[Â, f(Ĥ0)] = 1 .

A few comments conclude this section. The vector field X̂ defined by (4) has singularities stem-
ming from critical points of E with indefinite signature (where F does not vanish). This leads to

singularities in both the principal and subprincipal symbol of the differential operator Â as given in
(11). As shown in Section 2.2, the singularity of the principal symbol is integrable in dimension d ≥ 2
while the subprincipal symbol is integrable for d ≥ 3. It has been shown above that this does not
prevent (11) from defining a self-adjoint operator. There is another similarity between A = F∗ÂF
and the usual dilation operator used for the Laplacian in L2(Rd). Let Xj = F∗X̂jF be the operator

on `2(Zd) associated with the jth component X̂j of X̂. Also let Q = (Q1, . . . , Qd) be the position
operator defined by Qj φ(n) = nj φ(n), for n ∈ Zd and φ decreasing sufficiently fast. Then the Fourier
transform of the r.h.s. of (11) leads to

A =
1

2

d∑
j=1

(Xj Qj +Qj Xj) . (12)

Comparing with the usual dilation operator on Rd, Xj can be interpreted as the lattice analog of the
jth component of the momentum operator.

2.4 Change of variables and REF representation

This section is devoted to the definition and the properties of the rescaled energy and Fermi surface
(REF) representation. The proof of Theorem 1 was mainly based on the change of variables θb :
Td → Td with Jacobian (10). It will be supplemented by the coarea formula (see e.g. [Sak] for a
proof and note that S is of zero measure). If νE denotes the Riemannian volume measure on ΣE

(induced by the euclidean metric on Td),∫
Td
dk φ(k) =

∫ E+

E−

dE

∫
ΣE

νE(dσ)
1

|∇E(σ)|
φ(σ) . (13)
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This holds for φ in the set D. For the reference energy surface Σ = ΣEr , the measure is simply
denoted by ν = νEr . The coarea formula leads to the following:

Lemma 1 Let φ ∈ D. Then its integral can be written in the following three equivalent ways:

∫
Td
dk φ(k) =

∫
R
db

∫
Σ

ν(dσ)
∣∣∣ det(θ′b|TσΣ)

∣∣∣ ∣∣∣X̂(θb(σ))
∣∣∣ φ {θb(σ)} , (14)

=

∫
R
db

∫
Σ

ν(dσ) exp

(∫ b

0

du div(X̂)(θu(σ))

) ∣∣∣X̂(σ)
∣∣∣ φ (θb(σ)) , (15)

=

∫ E+

E−

dE

∫
Σ

ν(dσ)
| det(θ′f(E)|TσΣ)|
|∇E(θf(E)(σ))|

φ
(
θf(E)(σ)

)
, (16)

where θ′b|TσΣ denotes the derivative of θb restricted to the tangent space of Σ at σ (so that this is a
(d− 1)× (d− 1) matrix).

Proof: Starting from the coarea formula (13), the substitution b = f(E) given in (5) and the
diffeomorphism of Proposition 2 will be used in the following change of variables:

∫
Td
dk φ(k) =

∫
R
db

∫
Σf−1(b)

νf−1(b)(dσ)
F (f−1(b))

|∇E(σ)|
φ(σ)

=

∫
R
db

∫
Σ

ν(dσ)
∣∣∣ det(θ′b|TσΣ)

∣∣∣ F (E(θb(σ)))

|∇E(θb(σ))|
φ(θb(σ)) .

In the second equality, the identity F (f−1(b)) = F (E(σ)) for σ ∈ Σf−1(b) was used. Replacing

the definition of X̂ already shows (14) as well as (16). Next θ′b can be decomposed as θ′b|TσTd =
θ′b|TσΣ ⊕ θ′b|(TσΣ)⊥ implying

| det(θ′b|TσTd)| = | det(θ′b|TσΣ)| |θ′b|(TσΣ)⊥| . (17)

In order to compute θ′b|(TσΣ)⊥ it should be remarked that the derivative of the equation ∂bθb = X̂ ◦ θb
is ∂bθ

′
b = X̂ ′ ◦θb θ′b, leading to θ′b(X̂(σ)) = X̂(θb(σ)). As the one-dimensional space (TσΣ)⊥ is spanned

by X̂(σ), it follows that

|θ′b|(TσΣ)⊥ | =
∣∣∣θ′b( X̂(σ)

|X̂(σ)|

)∣∣∣ =
|X̂(θb(σ))|
|X̂(σ)|

.

Consequently ∣∣∣ det(θ′b|TσΣ)
∣∣∣ ∣∣∣X̂(θb(σ))

∣∣∣ = exp

(∫ b

0

du div(X̂)(θu(σ))

) ∣∣∣X̂(σ)
∣∣∣ . (18)
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Replacing this in (14) proves (15). 2

The following notation will be useful

db(σ) =
∣∣∣ det(θ′b|TσΣ)

∣∣∣ 1
2
∣∣∣X̂(θb(σ))

∣∣∣ 1
2

= exp

(
1

2

∫ b

0

du div(X̂)(θu(σ))

) ∣∣∣X̂(σ)
∣∣∣ 1

2
. (19)

From (15), it follows that the map U defined on D by

(Uφ)b(σ) = db(σ) φ(θb(σ)) , φ ∈ D ⊂ L2(Td) , (20)

extends to a unitary from L2(Td) to L2(R)⊗L2(Σ, ν). The variable b is the rescaled energy difference
w.r.t. the reference quasi-Fermi surface Σ. Expressing this in terms of Wb (see equation (9)), leads

to (Uφ)b(σ) = |X̂(σ)| 12 (Wbφ)(σ). The inverse, acting on ψ ∈ L2(R)⊗ L2(Σ, ν), is given by

(U∗ψ)(k) = db(θ−b(k))−1 ψb(θ−b(k)) , b = f−1(E(k)) .

Note that U is unitary. The expression H̃0 = UĤ0U∗ = UFH0F∗U∗ will be called the REF represen-
tation of H0. Any operator in the REF representation will carry a tilde. The operator (B̃ψ)b = bψb is

the rescaled energy. Its conjugate operator clearly is Ã with (Ãψ)b = 1
ı
∂bψb. Both of these operators

are unbounded and have the standard self-adjoint domains. The following result states that these
notations are consistent with the above.

Proposition 3 The following relations hold

U Ĥ0 U∗ = f−1(B̃)⊗ 1Σ , U f(Ĥ0)U∗ = B̃ , U ÂU∗ = Ã .

Proof: The only point to be checked is how the commutation relations of H0 and A, as proved in
Theorem 1, are implemented under U . The first identity results from (20) and

f−1(b)φ(θb(σ)) = E(θb(σ))φ(θb(σ)) =
(
Ĥ0φ

)
(θb(σ)) .

The second formula is obtained from the first one through (unbounded) functional calculus. The
third one follows from

(Ã⊗ 1Uφ)b(σ) =
1

ı
∂b (|X̂|

1
2 eıbÂφ)(σ) = (Â |X̂|

1
2 eıbÂ φ)(σ) = (UÂ φ)b(σ) ,

where U is expressed in terms of the unitary group Wb = eıbÂ up to the factor |X̂(σ)| 12 which does
not depend on b. 2

It is worth comparing the previous construction to the usual one used in scattering theory on
Rd, where H0 = −∆ is the Laplacian acting on L2(Rd). Then, the (unitary) Fourier transform
F : L2(Rd) 7→ L2(Rd) diagonalizes H0, that is, FH0F∗ is the operator of multiplication by E(k) = k2.
This function has only one critical point at k∗− = 0 corresponding to the minimum of energy E− = 0.

The vector field X̂ is defined as in (4), now with k ∈ Rd. Let the reference energy be Er = 1

11



so that the (quasi-) Fermi surface Σ is the unit sphere Sd−1. Furthermore let F (E) = 2E, which

vanishes at the only critical value. Then X̂(k) = k and f(E) =
∫ E

1
de
2e

= 1
2

ln(E). The flow is

θb(σ) = ebσ. As div(X̂) = d, it follows that db(σ) = e
1
2
db. Therefore the unitary transformation

U : L2(Rd)→ L2(R)⊗ L2(Sd−1) to the REF representation is given by

(Uφ)b(σ) = e
1
2
db φ(ebσ) .

This transformation is discussed and used, e.g., by Jensen [Jen] and also [KR3].

2.5 EF representation

Another natural useful representation is the energy and Fermi surface (EF) representation. A local
version of this representation is used in the paper by Birman and Yafaev [BY]. It is associated with
the unitary map V : L2(Td)→ L2([E−, E+])⊗ L2(Σ, ν) defined on D by

(Vφ)E(σ) =
| det(θ′f(E)|TσΣ)| 12

|∇E(θf(E)(σ))| 12
φ(θf(E)(σ)) , φ ∈ D .

The unitarity follows directly from (16). It is related to the unitary operator U as follows

(Vφ)E(σ) =
1

F (E)
1
2

1

|X̂(σ)| 12
(Uφ)f(E)(σ) . (21)

The EF representation of an operator on L2(Td) is then obtained by conjugation with V . It will

carry a circle instead of a tilde, such as
◦
H0 = VĤ0V∗,

◦
A = VÂV∗ and so on. Any operator that is a

direct integral in the REF representation is also a direct integral in the EF representation. The first
example of this type is the Hamiltonian H0 itself:

(
◦
H0φ)E(σ) = E φE(σ) .

More generally, given any fibered operator Õ =
∫ ⊕

db Õb in the REF representation, its EF represen-

tation is given by
◦
O =

∫ ⊕
dE

◦
OE with

◦
OE = Õf(E). Another example will be the scattering matrix

below. The dilation operator in the EF representation can be easily deduced from (21):

(
◦
Aφ)E(σ) = F (E)

1

ı
∂EφE(σ) +

1

2ı
F ′(E)φE(σ) ,

where φ is in the domain of
◦
A, in particular, its derivative is square integrable and φ vanishes at the

boundaries of [E−, E+].

12



2.6 Boundary values of the free resolvent

Let Λ ⊂ Zd be a finite set. Eventually, Λ will be the support of the perturbation. Associated with Λ
is the subspace `2(Λ) = C|Λ|. Let Π∗ : C|Λ| → `2(Zd) be the canonical injection obtained by extending
elements of `2(Zd) by zero outside Λ. It is a partial isometry such that Π∗Π is the |Λ|-dimensional
projection in `2(Zd) onto the subspace of elements supported by Λ, while Π Π∗ = 1C|Λ| . The finite
volume Green matrix is defined by:

GΠ
0 (z) = Π (z −H0)−1 Π∗ .

This is a matrix of size |Λ|× |Λ|. If Λ = {0} it will be called the Green function. An important basic
fact about the Green matrix is its Herglotz property, that is, −=mGΠ

0 (z) = ı(GΠ
0 (z)−GΠ

0 (z)∗)/2 > 0
for =m(z) > 0. This implies, in particular, that GΠ

0 (z) is invertible for =m(z) 6= 0. The boundary
values of GΠ

0 (z) on the real axis will be analyzed in this section. Gieseker, Knörrer and Trubowitz
[GKT] studied thoroughly the Fermi surfaces for dimensions d ≥ 2 and for generic periodic potentials.
They showed that it is an algebraic variety and constructed a compactification. They also investigated
the nature of the van Hove singularities, which, in two dimension produce a logarithmic divergence
of the density of states, namely the diagonal elements of =mGΠ

0 (E − ı0). For d = 2 and the discrete
Laplacian, these limit behaviors can also be read off the explicit formulas for the Green function
given in [Eco], but for d ≥ 3 only numerical results and toy models seem to be known.

Proposition 4 Let d ≥ 3 and let E be analytic. The weak limits GΠ
0 (E ± ı0) = limε↓0G

Π
0 (E ± ıε)

exist. Furthermore:

(i) Away from the critical values of E, the map E ∈ R 7→ GΠ
0 (E ± ı0) is real analytic. At the critical

points it is Hölder continuous.

(ii) =mGΠ
0 (E− ı0) = −=mGΠ

0 (E+ ı0) vanishes on (−∞, E−]∪ [E+,∞). It is a positive matrix with
nonzero diagonal entries on (E−, E+).

(iii) The map E ∈ R 7→ <eGΠ
0 (E) is negative and decreasing on (−∞, E−] and positive and decreasing

on [E+,∞). Furthermore, GΠ
0 (±∞) = 0.

(iv) For E ∈ [E−, E+] close to E±,

=mGΠ
0 (E − ı0) = D± |E − E±|

d
2
−1 MΠ

± + O(|E − E±|
d
2 ) ,

where MΠ
± = |vΠ

±〉〈vΠ
±| is the projection on the vector vΠ

± = (|Λ|− 1
2 eın·k

∗
±)n∈Λ ∈ C|Λ| and

D± =
2
d
2
−1π |Λ| |Sd−1|

(2π)d
| det(E ′′(k∗±))|

1
2 .

(v) There are matrices NΠ
± < 0 such that

<eGΠ
0 (E) = GΠ

0 (E±) +


O(E − E±) d = 3 ,

D±|E − E±| ln
(

1
|E−E±|

)
MΠ
± +O(E − E±) d = 4 ,

(E − E±)NΠ
± + o(E − E±) d ≥ 5 .

13



Proof: The proofs given below are detailed extensions of the work of van Hove [VH]. For m,n ∈ Λ,
the matrix elements of GΠ

0 (z) are given by

〈m|GΠ
0 (z)|n〉 = 〈m|(z −H0)−1|n〉 =

∫
Td

ddk

(2π)d
eı(n−m)·k

z − E(k)
.

(i) Outside the critical values: By construction the matrix GΠ
0 (z) is holomorphic for z /∈ σ(H0).

In particular, since the spectrum of H0 is the interval σ(H0) = [E−, E+], it follows that the map
E ∈ R \ [E−, E+] 7→ GΠ

0 (E) is real analytic and converges to zero at ±∞. Moreover, its derivative
is negative. In particular, if the limit of this matrix exists at E±, this limit is a negative matrix at
E− and a positive matrix at E+. Now, since E is analytic, it follows that it has only a finite number
of critical points and it admits a holomorphic continuation in (T + ıR)d in a small neighborhood of
the form Bη = {k + ıκ ∈ (T + ıR)d | max1≤i≤d |κi| < η}. It follows that, for ε > 0 small enough,
the manifold defined as the set Tdε = {k + ıε∇E(k) | k ∈ Td} is entirely contained in Bη. Using the
Cauchy formula, it follows that

〈m|GΠ
0 (z)|n〉 =

∫
Tdε

ddk′

(2π)d
eı(n−m)·k′

z − E(k′)
.

Since k′ ∈ Tdε , it follows that k′ = k + ıε∇E(k) for some k ∈ Td, so that, using a Taylor expansion,

=m E(k′) = ε |∇E(k)|2 + O(ε2) .

Consequently, if E ∈ [E−, E+] \ E(S∗) is not a critical value, there is ρ > 0 such that, if |z −E| < ρ,
the distance of dist{z, E(Tdε )} > 0 does not vanish. In particular, GΠ

0 (z) extends as a holomorphic
function of z from =m(z) < 0 to a neighborhood of E. In particular, the boundary value GΠ

0 (E− ı0)
is analytic in E in [E−, E+] \ E(S∗). A similar argument applies to GΠ

0 (E + ı0).

(ii) Partitioning: For any k∗ ∈ S∗, let Bδ(k
∗) be the open ball centered at k∗ of radius δ > 0.

Let also Bδ/2(k∗) be the closed ball also centered at k∗ of radius δ/2. Let Ureg be the open set
obtained by removing from Td the union of the balls Bδ/2(k∗), k∗ ∈ S∗. It follows that the family
{Ureg} ∪ {Bδ(k

∗) | k∗ ∈ S∗} is a finite open cover of Td. Let then {χreg} ∪ {χk∗ | k∗ ∈ S∗} be a smooth
partition of unity associated with this open cover. The previous integral can be decomposed into a
sum

〈m|(z −H0)−1|n〉 = Greg(z) +
∑
k∗∈S∗

Gk∗(z) , Gk∗(z) =

∫
Bδ(k∗)

ddk

(2π)d
χk∗(k)

eı(n−m)·k

z − E(k)
. (22)

The contribution Greg is regular because the integral vanishes around all critical points. Using the
coarea formula and the results of Appendix A, it follows that Greg is holomorphic in the complement
of the spectrum of H0 and its boundary values are smooth everywhere on the real line.

(iii) Non extremal critical points: The boundary values of the Gk∗ ’s, however, may not be
smooth because of the contribution of the critical point. Let k∗ be one of the critical points of
signature d = (d+, d−) with d± 6= 0 and in the following G∗ = Gk∗ will denote its contribution to
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the previous decomposition. If δ is small enough, the Morse lemma [Nic] implies that there exists a
neighborhood U of k∗ containing Bδ(k∗) and a diffeomorphism ϕ : Bδ(0) → U such that ϕ(0) = k∗

and Eϕ = E ◦ ϕ is quadratic:

Eϕ(k) = E∗ +
1

2

d+∑
i=1

k2
i −

1

2

d∑
j=d++1

k2
j ,

for ‖k‖ < δ and where E∗ = E(k∗). This diffeomorphism has a Jacobian matrix J = ϕ′(0) sat-
isfying Jdiag(1d+ ,−1d−)J∗ = E ′′(k∗)−1. In particular, the Jacobi determinant of ϕ stays close to
| det(E ′′(k∗))|−1/2 over the neighborhood U and is a smooth function. It follows that the integral
defining G∗ is given by

G∗(z) =

∫
‖k‖<δ

ddk

(2π)d
∣∣det(ϕ′(k))

∣∣χk∗(k)
eı(n−m)·ϕ(k)

z − Eϕ(k)
.

It will be convenient to use the following polar variables

ki = r+ω+ if 1 ≤ i ≤ d+ , kj = r−ω− if d+ < j ≤ d ,

were r± ≥ 0 are the radial variables and ω± ∈ Sd±−1 the angular ones. It follows that

G∗(z) =

∫
r2
++r2

−<δ
2

r
d+−1
+ dr+ r

d−−1
− dr−

(2π)d
F (r+, r−)

z − E∗ − 1
2
(r2

+ − r2
−)

,

where F is a smooth function with support inside the disk r2
+ + r2

− < δ2 given by

F (r+, r−) =

∫
Sd+−1×Sd−−1

dω+ dω−
∣∣det(ϕ′(k))

∣∣χk∗(k) eı(n−m)·ϕ(k) .

Equivalently G∗ can be expressed as

G∗(z) =

∫
R

ρ(e)de

z − E∗ − e
,

where ρ is defined by

ρ(e) =

∫
r2
++r2

−<δ
2

r
d+−1
+ dr+ r

d−−1
− dr−

(2π)d
F (r+, r−) δ

(
r2

+ − r2
−

2
− e
)
.

If e > 0, the usual rule followed by the Dirac distribution δ leads to

ρ(e) =

∫ δ

0

dr

(2π)d
rd−−1(e+ r2)(d+−2)/2 F (

√
r2 + e, r) (23)

For e < 0, a similar formula holds by exchanging d+ with d− and F (r, r′) with Fs(r, r
′) = F (r′, r).

The previous expression shows that, if d− ≥ 2, the Lebesgue dominated convergence theorem implies
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that the limits ρ(±0) exist and are equal. In particular, ρ is continuous at e = 0. Moreover, since
d ≥ 3, if d+ = 1, then d− = d−1 ≥ 2. Then rd−−1(e+r2)(d+−2)/2 = rd−2(e+r2)−1/2 ≤ rd−5/2 showing
that, again, ρ is continuous at e = 0.

Equation (23) also shows that ρ is differentiable for e 6= 0. Moreover, its derivative is given by
the sum of two terms ρ′1 + ρ′2 with

ρ′1(e) =
d+ − 2

2

∫ δ

0

dr

(2π)d
rd−−1(e+ r2)d+/2−2 F (

√
r2 + e, r) ,

ρ′2(e) =
1

2

∫ δ

0

dr

(2π)d
rd−−1(e+ r2)d+/2−3/2 ∂1F (

√
r2 + e, r) .

The same argument as before shows that, if d ≥ 3, ρ′2 admits a finite limit as ±e ↓ 0. However, these
two limits may not be equal, if F 6= Fs. On the other hand, if d ≥ 5, ρ′1 also admits limits and the
two limits coincide. For d = 3, 4, however, it follows that d+ < 4 so that ρ′1 may diverge at e → 0.
Nevertheless, the integrand can be bounded by

rd−−1(e+ r2)d+/2−2 ≤ e−α rd−5−2α ,

which is integrable if α > 1/4 for d = 3 and α > 0 for d = 4. Hence in both cases, there is K > 0
such that

|∂eρ| ≤
K

eα
=⇒ |ρ(e)| ≤ K

1− α
e1−α ,

showing that ρ is Hölder continuous at the critical points. Using the Plemelj-Privalov theorem
(Lemma 10 of Appendix A), it follows that the same is true for the boundary values of G∗.

(iv) Near the extrema: The behavior near the maximum or the minimum can be treated similarly
so that it is enough to consider only the minimum at k∗−. Again by the Morse lemma, there is a
neighborhood U of k∗− containing Bδ(k

∗
−) and a diffeomorphism ϕ : Bδ(0)→ U with ϕ(0) = k∗− and

such that E ◦ ϕ(k) = E− + (1/2)
∑d

i=1 k
2
i . Introducing the polar coordinates r = ‖k‖ and ω ∈ Sd−1

so that k = rω, the contribution G−(z) = Gk∗−
(z) is given by the integral

G−(z) =

∫ δ

0

rd−1dr

(2π)d
eı(n−m)·k∗− F (r)

z − E− − 1
2
r2

, F (r) =

∫
Sd−1

dω |ϕ′(rω)|χ−(ϕ(rω)) eı(n−m)·(ϕ(rω)−k∗−) .

with χ− a smooth function with support in U(k∗−) which is equal to 1 on the ball ‖k − k∗−‖ ≤ δ/2.
In particular, F is smooth and bounded in 0 < r < δ, it vanishes in a neighborhood of r = δ and
all its derivatives have a limit at r = 0. Consequently, the integration domain can be extended to
[0,∞) without change. At this point two remarks should be made:

(1) F (0) = | det(ϕ′(0))| |Sd−1| > 0 and the Morse lemma shows that | det(ϕ′(0))| = det(E ′′(k∗−))1/2.

(2) The expression eı(n−m)·k∗− is the matrix element |Λ|〈m|MΠ
− |n〉 of the projection matrix MΠ

− .

The change of variable e = r2/2 yields
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G−(z) =
eı(n−m)·k∗−

(2π)d

∫ ∞
0

de
(2e)

d
2
−1F (

√
2e)

z − E− − e
. (24)

Since d ≥ 3, the function e ∈ [0,∞) 7→ e
d
2
−1F (

√
2e) is continuous and vanishes at e = 0 like ed/2−1.

Hence it can be continued as a Hölder continuous function on the entire real line with support in
[0, δ

2

2
). Consequently, thanks to the Lemma 10, G−(E± ı0) is also continuous w.r.t. E. In particular,

it has a finite value at E = E−. Since the other contributions to GΠ
0 are regular near E−, GΠ

0 (E± ı0)
is also a Hölder continuous function of E near E = E−.

All contributions in equation (22) other than G− being analytic near E = E−, it follows that any
singularity of GΠ

0 (E ± ı0) near E = E− is coming from G−. In addition, the imaginary part of the
other contributions to GΠ

0 vanishes on the real axis at E = E− since H0 is selfadjoint. Hence the
only contribution to its imaginary part is coming from G−. Thanks to the Lemma 10 it follows from
(24) that this imaginary part is exactly

=m GΠ
0 (E ± ı0) = ∓ π (2(E − E−))

d
2
−1|Λ|MΠ

−
det(E ′′(k∗−))

1
2 |Sd−1|

(2π)d
+ O

(
(E − E−)

1
2

)
.

On the other hand, the real part can be estimated by considering the subdominant contribution of
G− given by the difference

G−(E ± ı0)−G−(E−) = 2(E − E−)
eı(n−m)·k∗−

(2π)d

∫ ∞
0

de
(2e)

d
2
−2F (

√
2e)

E − E− − e± ı0
. (25)

The same argument as before shows that the integral defines a continuous function of E on the
real line if d ≥ 5. Consequently, E ∈ R 7→ GΠ

0 (E ± ı0) is continuously differentiable in a small
neighborhood of E = E−. Since the derivative is negative outside of the spectrum of H0, it follows
that the claim (v) of the Proposition 4 holds for d ≥ 5.

For d = 4, equation (25) shows that Lemma 11 applies. For indeed, the function e ∈ [0,∞| 7→
F (
√

2e) ∈ C is smooth because the Taylor expansion of F (r) near the origin contains only even terms
and F (0) 6= 0. Consequently

G−(E ± ı0)−G−(E−) = (E − E−) ln(|E − E−|)
eı(n−m)·k∗−F (0)

(2π)d−1
+ O(|E − E−|) .

Since all other contributions to the real part of GΠ
0 (E ± ı0) are regular at E = E−, it follows that

<e GΠ
0 (E ± ı0) = GΠ

0 (E−) + |Λ|MΠ
−

det(E ′′(k∗−))1/2 |Sd−1|
(2π)d−1

(E − E−) ln(|E − E−|) + O(|E − E−|) .

At last, for d = 3, returning to the variable r =
√

2e, equation (25) becomes
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G−(E ± ı0)−G−(E−) = 2(E − E−)
eı(n−m)·k∗−

(2π)3

∫ ∞
0

dr
F (r)

E − E− − r2

2
± ı0

.

The integral on the r.h.s. can be decomposed into two contributions

I(E) =

∫ ∞
0

dr
F (r)

E − E− − r2

2
± ı0

= I1(E) + I2(E) ,

with

I1(E) = F (0)

∫ ∞
0

dr
1

E − E− − r2

2
± ı0

, I2(E) =

∫ ∞
0

dr
F (r)− F (0)

E − E− − r2

2
± ı0

. (26)

The first part can be computed explicitly to give

I1(E) = ± ı π F (0)√
2(E − E−)

, if E > E− .

This part is singular and gives a nontrivial contribution to GΠ
0 (E ± ı0) of the form

GΠ
0 (E ± ı0) = GΠ

0 (E−) ± ı π
√

2(E − E−) |Λ|MΠ
−

det(E ′′(k∗−))
1
2 |Sd−1|

(2π)d
+ Î2(E) ,

where Î2(E) comes from the contribution of I2. Since the matrix MΠ
− is a projection, the singularity

does not contribute to the real part of this expression. On the other hand, the integral I2 can be
treated by using two remarks: (a) F (r) − F (0) = O(r2) at r = 0, (b) for 0 ≤ E − E− ≤ δ2

4
and,

for r > δ, the integral converges to a smooth function of E. Hence the contribution of the integral
coming from r > δ does not produce any singularity, while the contribution for r ≤ δ is regular at
r = 0 leading to a contribution that is continuous at E = E− thanks to the Lemma 10. This finishes
the proof of Proposition 4. 2

2.7 Localized states in the REF representation

The REF representation of the localized state at site m ∈ Zd is ψm = UF |m〉. The states (ψm)m∈Zd
form an orthonormal basis in L2(R)⊗ L2(Σ, ν). More explicitly, they are given by

ψm,b(σ) =
1

(2π)
d
2

db(σ) eım·θb(σ) , (27)

for any σ ∈ Σ avoiding S. It will be convenient below to consider ψm,b as a state in L2(Σ, ν). These
restricted localized states are not normalized, but their norm is independent of m:

‖ψm,b‖2
L2(Σ,ν) =

1

(2π)d

∫
Σ

ν(dσ) |db(σ)|2 .

This norm as well as scalar products between these states are linked to the resolvent.
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Lemma 2 The following holds

〈ψn,b|ψm,b〉L2(Σ,ν) =
F (f−1(b))

π
〈n| ∓ =m

(
(f−1(b)± ı0−H0)−1

)
|m〉 .

Proof: Thanks to the coarea formula and the Plemelj-Privalov theorem (see Lemma 10)

〈n| =m
(
(E ± ı0−H0)−1

)
|m〉 =

1

2ı

∫ E+

E−

de

(
1

E ± ı0− e
− 1

E ∓ ı0− e

) ∫
Σe

νe(dσ)

(2π)d
eı(m−n)·σ

|∇E(σ)|

= ∓π
∫

ΣE

νE(dσ)

(2π)d
1

|∇E(σ)|
eı(m−n)·σ .

Always using E = f−1(b), the map θb : Σ→ ΣE is a diffeomorphism. Thus the associated change of
variables gives

〈n| =m
(
(E ± ı0−H0)−1

)
|m〉 = ∓ π

∫
Σ

ν(dσ)

(2π)d
∣∣det(θ′b|TσΣ)

∣∣ 1

|∇E(θb(σ))|
eı(m−n)·θb(σ)

=
∓ π

F (f−1(b))

∫
Σ

ν(dσ)

(2π)d
∣∣det(θ′b|TσΣ)

∣∣ |X̂(θb(σ))| eı(m−n)·θb(σ) .

Now the formula follows from the definition of ψm,b and (19). 2

Corollary 1 Let Πb be a partial isometry between Fb and the subspace of L2(Σ, ν) spanned by the
(ψm,b)m∈Λ and introduce the operator Rb =

∑
m∈Λ |ψm,b〉〈m| mapping `2(Λ) = C|Λ| onto the same

subspace.

(i) One has

R∗bRb =
F (E)

π
=mGΠ

0 (E − ı0) , b = f(E) .

(ii) If Pb denotes the orthogonal projection onto the subspace Fb of C|Λ| image of R∗b , then

Rb = Π∗b

√
F (E)

π

(
=mGΠ

0 (E − ı0)
) 1

2 Pb , b = f(E) .

(iii) The map b ∈ R 7→ Rb ∈ B
(
C|Λ|, L2(Σ, ν)

)
is norm continuous.

Proof: (i) is a re-phrasing of Lemma 2 and (ii) just the usual polar decomposition. (iii) Since Rb has
finite rank, the norm continuity follows form the strong continuity. In turns the strong continuity
follows from the continuity of the inner products 〈ψn,b|ψm,b〉L2(Σ,ν). The latter property follows from
Lemma 2 and from the continuity of F , f−1 and the imaginary part of the Green function (see
Proposition 4), with respect to E or to b. 2

Let us point out that Pb = ΠbΠ
∗
b and Πb = PbΠb. Furthermore, =mGΠ

0 (f−1(b) ± ı0) commutes
with Pb. The next lemma is a technical result which will be needed to deal with threshold singularities
in dimension d = 3.
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Lemma 3 Let d ≥ 2 and let the extrema of E be isotropic in the sense that E ′′(k∗±) is a multiple of
the identity matrix. Then

lim
b→±∞

1

‖ψm,b‖L2(Σ,ν)

ψm,b = eım·k
∗
± ψ± , (28)

where ψ± ∈ L2(Σ, ν) are normalized states given by

ψ±(σ) = C exp

(
1

2

∫ ∞
0

du
(
div(X̂)(θu(σ))± d

))
|X̂(σ)|

1
2 , C > 0 .

Proof: Let us first argue that ψ± are well-defined and normalizable. The isotropy hypothesis and
(8) imply div(X̂)(k∗± + k) = ∓ d+O(|k|). But θu(σ) converges to k∗± as u→ ±∞ at an exponential
rate. Therefore the integral in the exponential exists and hence ψ± are well-defined. Thanks to the
definition (27) of ψm,b and to equation (19) the conclusion of the lemma follows. 2

Remark 1 Without the isotropy assumption that E ′′(k∗±) is a multiple of the identity, the l.h.s. of
(28) does not converge to a state in L2(Σ, ν). 2

Lemma 2 also implies that the states ψm,b are in general not orthogonal in L2(Σ, ν), not even
linearly independent as show the next results.

Lemma 4 Using the notation of the Corollary 1, one has:

(i) Fb = Ran
(
=mGΠ

0 (E − ı0)
)

whenever E− < E < E+ and b = f(E).

(ii) In any interval of R not containing a critical value f(E(S∗)), there is a discrete subset without
accumulation points outside of which the dimension of Fb is constant.

Proof: The first result follows directly from Lemma 2. Since F does not vanish on (E−, E+), the
image is also the image of =mGΠ

0 (E − ı0). In particular,

dim(Fb) = Rank
(
=mGΠ

0 (E − ı0)
)
, b = f(E) .

As E 7→ =mGΠ
0 (E− ı0) is real-analytic away from the critical values E(S∗), the statement (ii) follows

from analytic perturbation theory. 2

The next question concerns whether the rank is indeed changing as a function of E. In addition, it
is important to have examples leading to a non-maximal typical rank because this will allow produce
embedded eigenvalues later on. The following result will help to construct such examples.

Lemma 5 With the hypothesis of Lemma 4, the orthogonal complement F⊥b in C|Λ| is given by

F⊥b = Ker(=mGΠ
0 (E − ı0)) , b = f(E) .

In addition, a vector v = (vm)m∈Λ belongs to F⊥b (with b = f(E)) if and only if its Fourier transform
v̂(k) =

∑
m∈Λ vm e

ım·k is vanishing identically on the energy surface ΣE.
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Proof: The first relation comes directly from the first result of Lemma 4. As in the proof of Lemma 2,

〈v|=mGΠ
0 (E − ı0)|v〉 = π

∫
ΣE

νE(dσ)

(2π)d
|v̂(σ)|2

|∇E(σ)|
.

In particular, since =mGΠ
0 (E − ı0) ≥ 0, it follows that v ∈ Ker

(
=mGΠ

0 (E − ı0)
)

if and only if v̂
vanishes νE-almost everywhere on ΣE. But since v̂ is a trigonometric polynomial, it has to vanish
everywhere on ΣE. 2

Proposition 5 If E ∈ [E−, E+] is not a critical energy, a vector v = (vm)m∈Λ belongs to F⊥b ,
with b = f(E), if and only if there is w ∈ `2(Zd) such that v = (E1 − H0)w. Then w admits a
Fourier transform having the same degree of regularity as E. More precisely, if E is of class Cr with
r ∈ N∪ {∞} ∪ {ω}, so is the Fourier transform of w. Moreover, if E is a trigonometric polynomial,
then w has a finite support and the previous claim applies to any E ∈ (E−, E+).

Proof: A direct calculation shows indeed that, for v = (E1 − H0)w, for some w ∈ `2(Zd), then
〈v|=mGΠ

E(E − ı0)|v〉 = 0. Conversely, if v ∈ F⊥b , then v̂ is a trigonometric polynomial vanishing on
ΣE thanks to the Lemma 5. Therefore, since E is not critical, the energy surface ΣE is a smooth
manifold and ŵ(k) = v̂(k)/(E−E(k)) is analytic in a neighborhood of this surface. Since it is analytic
outside as well, the result follows. The Fourier coefficients of ŵ defines a vector w ∈ `2(Zd), which
decay exponentially fast at infinity by analyticity. In addition, if E is a polynomial, it follows that ŵ
is a polynomial as well by Hilbert’s Nullstellensatz, which applies even if E is critical. Therefore w
has finite support. 2

The last proposition suggests examples of situations for which the kernel is trivial or not.

Example 1 If Λ is reduced to one point, then ρΠ(E) being positive for E− < E < E+ by Proposi-
tion 4, the kernel is trivial. 2

Example 2 Let H0 be the discrete Laplacian in dimension d = 2 with band function E(k1, k2) =
cos(k1) + cos(k2). If Λ = {(0, 0), (−1, 0), (0,−1), (1, 0), (0, 1), (1, 1), (1, 2), (2, 1)} and ŵ(k) = eık1 − 1,
then neither H0w nor w are supported in Λ. Nevertheless (1

2
+ H0)w is supported by Λ. Hence for

the energy E = −1
2

= f(b) the set F⊥E is nonempty. 2

Example 3 Again H0 is the discrete Laplacian in dimension d = 2. Here we choose the set Λ =
{(0, 0), (−1, 0), (0,−1), (1, 1), (1, 2), (2, 1)}, then ŵ(k) = eık1eık2 − 1 is supported in Λ and so is
E(k)ŵ(k). Therefore for any E = f−1(b) the vector v̂ = (E − E)ŵ is the Fourier transform of a
compactly supported vector. 2

If E is a trigonometric polynomial, more can be said. In such a case there is a finite set S ⊂ Zd
such that E(k) =

∑
s∈Zd Eseıs·k with Es 6= 0 ⇐⇒ s ∈ S. This set S is called the support of H0.

Since H0 is self-adjoint, E is real-valued so that E−s = Es for all s ∈ S. In particular, S is invariant
under the parity map s 7→ −s. The S-interior of a finite set will now be defined as the set of its
points that cannot jump to the outside using hoping terms from H0:
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Definition 1 Let Λ and S be subsets of Zd. Then the S-interior ΛS of Λ is the set of x ∈ Λ such
that x+ S ⊂ Λ.

Example 4 If E is a trigonometric polynomial with support S and if Λ is a finite set with nonempty
S-interior, then any w supported by ΛS satisfies (E −H0)w(x) = 0 outside Λ. Hence the dimension
of F⊥E is at least equal to the number of points in the S-interior of Λ. 2

Proposition 6 Let Λ ⊂ Zd be finite and let E be a polynomial. Then, there is a finite subset
V = V(Λ) in the spectrum of H0, such that dim(F⊥b ) is constant for E outside of V, if f(b) = E.

The proof of this proposition requires several steps that are described in the next four subsections.

2.7.1 Prime vectors and convexity

Lemma 6 (Prime vectors) A vector a = (a1, . . . , ad) ∈ Zd is called prime if it satisfies one of the
following equivalent definitions:

(i) Any λ > 0 such that λa ∈ Zd must satisfy λ ≥ 1.

(ii) The greatest common divisor of the coordinates of a is equal to 1.

(iii) The map φa : x ∈ Zd 7→ a · x ∈ Z is onto.

Proof of the equivalence: (i)⇒(ii) Let p ≥ 1 be the greatest common divisor of the coordinates
of a. It follows that a/p ∈ Zd. Therefore 1/p ≥ 1 implying that p = 1.

(ii)⇒(iii) Let the greatest common divisor of the coordinates of a be equal to one. The map φa is
a group homomorphism. In particular, its image is a subgroup of Z. Therefore there is an integer
p ≥ 1 such that this image coincides with pZ. The coordinates of a are given by ai = φa(ei), where
{e1, . . . , ed} denotes the standard basis of Zd. Thus, there are integers bi such that ai = pbi for all
i’s. Since the greatest common divisor of the coordinates is 1, it follows that p = 1.

(iii)⇒(i) Let a be such that φa is onto. Then there is y ∈ Zd such that φa(y) = 1. Let λ > 0 satisfiy
λa ∈ Zd. It follows that λ ∈ Q and that φλa(x) = λφa(x) ∈ Z. In particular, φλa(y) = λ ∈ Z,
showing that λ ≥ 1. Hence (i) holds. 2

Definition 2 A (positive) half-plane in Zd is a set of the form H+
a,m = {x ∈ Zd | a · x ≥ m} where

a is a prime vector in Zd and m ∈ Z. The associated (oriented) affine hyperplane Ha,m is defined
similarly as Ha,m = {x ∈ Zd | a · x = m}.

Definition 3 Let Λ ⊂ Zd.
(i) A prime vector a is a Λ-direction if there is m ∈ Zd such that Λ ⊂ H+

a,m.

(ii) An oriented affine hyperplane Ha,m (resp. half-plane H+
a,m) is called a contact hyperplane (resp.

a contact half-plane) for Λ whenever Λ ⊂ H+
a,m and Λ ∩Ha,m 6= ∅.

(iii) The convex hull of Λ, denoted by Conv(Λ), is the intersection of all its contact half-planea. If
no prime vector is a Λ-direction, then Conv(Λ) = Zd.

(iv) Λ is convex whenever it coincides with its convex hull.

(v) A finite convex set is called a polytope.
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It is easy to check that a polytope has a finite number of contact hyperplanes.

Lemma 7 Let a be a prime vector in Zd. Then there is a matrix A ∈ SL(d,Z), such that φa ◦
A(n, y) = n for all (n, y) ∈ Z× Zd−1.

Proof: Thanks to the Lemma 6, there is a vector b1 ∈ Zd such that φa(b1) = 1. On the other
hand, Ker(φa) is a subgroup of Zd and therefore it is free. In particular, it admits a basis {b2, . . . , bd}
(minimal set of generators). Clearly the vectors bj can be chosen to be prime. Then let A be the
d×d matrix with column given by the family {b1, . . . , bd}. By construction, A has integer coefficients.
Moreover, b1 = Ae1 and therefore φa(Ae1) = 1. In addition, φa(Aej) = φa(bj) = 0 whenever j ≥ 2.

Consequently, if y ∈ Zd is such that Ay = 0, then y1 = 0 and
∑d

j=2 yjbj = 0. Since Ker(φa) is

free, this implies that yj = 0 for all j’s. Hence A is one-to-one. On the other hand, if x ∈ Zd, then

x−φa(x)b1 ∈ Ker(φa). Therefore there are y2, . . . , yd ∈ Z such that x−φa(x)b1 =
∑d

j=2 yjbj. Setting
y1 = φa(x) and y = (y1, . . . , yd) it follows that x = Ay. Hence A is also onto. Therefore the matrix
A is invertible and its inverse has also integer entries. In particular, changing the sign of one of the
bj’s if necessary, det(A) = 1. 2

2.7.2 The A-Fourier transform

Let s ∈ Zd and let A ∈ SL(d,Z). Then let Ts and UA be the operators acting on `2(Zd) defined by

(Tsψ) (x) = ψ(x− s) , (UAψ) (x) = ψ(A−1x) , ψ ∈ `2(Zd) .

Then both Ts and UA are unitary operators. Moreover, if s, t ∈ Zd, one has Ts+t = TsTt and
T0 = 1. In a similar way, if A,B ∈ SL(d,Z) then UAUB = UAB and U(id) = 1. In particular,
U−1
A = UA−1 = U∗A. In addition, UATsU

−1
A = TAs leading to

H0 =
∑
s∈S

Es Ts =⇒ UAH0U
−1
A =

∑
s∈AS

EA−1s Ts ,

Thus UA changes the support of H0 from S into AS. Let now a be a prime vector and let A ∈ SL(d,Z)
be chosen to satisfy φa(Ae1) = 1. The partial Fourier transform FA is the unitary transformation
from `2(Zd) into `2(Z)⊗ L2(Td−1) defined by

(FAψ)n(p) =
∑

y∈Zd−1

ψ
(
A(n, y)

)
eıp·y , ψ ∈ `2(Zd) , p ∈ Td−1 .

It follows that

(FAH0ψ)n(p) =
∑

r∈φa(S)

EAr (p)(FAψ)n−r(p) , EAr (p) =
∑

t∈Zd−1, (r,t)∈A−1S

EA(r,t)e
ıp·t .

Since S is finite, each of the EAr ’s is a trigonometric polynomial. Moreover, S is invariant under
the reflection s 7→ −s, so that φa(S) ⊂ [−ra, ra] if ra(S) = maxφa(S) and both ±ra ∈ φa(S).
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Consequently, since φa(A(r, t)) = r, it follows that EAr 6= 0 if and only if r ∈ φa(S). In particular,
EA±ra 6= 0.

2.7.3 The case of convex Λ

From the definition of the S-interior, it follows immediately that the S-interior of a convex set Λ
coincides with the intersection ΛS =

⋂
(a,m) H

+
a,m+ra(S) over the pairs (a,m) such that H+

a,m is an
oriented contact half-space for Λ. This leads to the following result.

Proposition 7 Let Λ ⊂ Zd be a polytope. Then the equation (E −H0)w(x) = 0 for x /∈ Λ admits a
solution w with finite support if and only if w is supported by the S-interior of Λ.

Proof: Let a ∈ Zd be a prime vector and m ∈ Z be such that Ha,m is an oriented contact hyperplane
of Λ. Let also A ∈ SL(d,Z) be chosen such that φa(Ae1) = 1. Then for w ∈ `2(Zd) let wn(p) denote
the partial Fourier transform (FAw)n(p). It follows that, since φa(S) ⊂ [−ra(S), ra(S)], w satisfies
(E −H0)w(x) = 0 for φa(x) < m, namely∑

|r|≤ra(S)

(E δr,0 − Ear (p))wn−r(p) = 0 , ∀ n < m . (29)

In the following ra(S) will be denoted by ra. In particular, E−ra 6= 0. Since w is finitely supported,
there is N ∈ N such that wn = 0 for n < −N . In addition, each component wn(p) is a trigonometric
polynomial in p. Writing the equation (29) for n = −N − ra leads to

E−ra(p)w−N(p) = 0 =⇒ w−N = 0 .

Proceeding to write the equation (29) for n = −N − ra + l for l = 1, . . . ,m− 1 + N + ra, gives, by
the same argument, wn = 0 for n < m + ra. Hence the support of w is contained in the half-plane
H+
a,m+ra . Since this is true for any contact hyperplane Ha,m, the support of w is contained in the

S-interior of Λ. Conversely, if w is supported by ΛS, it follows that (E−H0)w is supported by Λ. 2

2.7.4 Conclusion of the proof of Proposition 6

Proof of Proposition 6: Since Λ ⊂ Conv(Λ), it follows that the equation (E − H0)w(x) = 0 is
satisfied for x /∈ Conv(Λ). Thanks to the Proposition 7, it follows that w is supported in the S-
interior of Conv(Λ). Let R be the orthogonal projection on the subspace `2(Conv(Λ)S) and let P the
orthogonal projection on `2(Λ). Then both P and R are finite dimensional. In addition, the previous
equation is satisfied if and only if w ∈ Ker((1−P )(E−H0)R) = Ker(R(E−H0)(1−P )(E−H0)R).
The matrix A(E) = R(E −H0)(1−P )(E −H0)R is finite dimensional, acts on `2(Conv(Λ)S) and is
a polynomial in the variable E ∈ [E−, E+]. Therefore its kernel has a constant dimension away from
a finite set by analytic perturbation theory. 2
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3 Scattering by a finite range perturbation

This section is dedicated to the scattering of a lattice particle by a finite range perturbation. In the
first part, the Green matrix of the perturbed Hamiltonian will be investigated, in the second part,
various formulas will be derived for the wave operators, the scattering matrix and the time delay
operator. At last, the Levinson theorem will be proved.

Let Λ ⊂ Zd be a finite subset, with |Λ| points. Let Π : `2(Zd)→ C|Λ| be the corresponding partial
isometry (see the introduction of Section 2.6). The perturbation will be a finite rank selfadjoint
operator V : `2(Zd) → `2(Zd), supported on Λ, namely V = Π∗ΠVΠ∗Π. Hence V is encoded in the
|Λ| × |Λ| matrix V Π = ΠVΠ∗. For convenience, V Π will be assumed to be invertible (this hypothesis
can be dropped if the kernel is eliminated like in Section 2.7). The perturbed Hamiltonian describing
the scattering is then H = H0 + V . A typical example for a local perturbation is a potential with
support Λ, namely V =

∑
n∈Λ vn |n〉〈n| with vn ∈ R\{0}.

3.1 Green function

Let GΠ(z) = Π(z −H)−1Π∗ be the Green matrix of the perturbed Hamiltonian. As for the unper-
turbed case, it is also a Herglotz matrix which is invertible for =m(z) 6= 0. The following formulas
are well-known.

Lemma 8 For z ∈ C \ R,

GΠ(z) =
(
GΠ

0 (z)−1 − V Π
)−1

=
(
1−GΠ

0 (z)V Π
)−1

GΠ
0 (z) , (30)

Let the T -matrix be defined by

T (z) = Π∗ TΠ(z) Π , TΠ(z) =
(
1− V ΠGΠ

0 (z)
)−1

V Π . (31)

Then

1

z −H
=

1

z −H0

+
1

z −H0

T (z)
1

z −H0

, (32)

Proof: The resolvent identity yields

1

z −H0

=
1

z −H
− 1

z −H0

V
1

z −H
=

(
1− 1

z −H0

V

)
1

z −H
.

Applying Π and Π∗ from the left and right respectively gives

GΠ
0 (z) =

(
1−GΠ

0 (z)V Π
)
GΠ(z) .

Now GΠ
0 (z) is Herglotz and thus invertible since z /∈ R. Hence, GΠ

0 (z)−1 − V Π is also Herglotz and
invertible, leading to the invertibility of 1 − GΠ

0 (z)V Π = GΠ
0 (z)(GΠ

0 (z)−1 − V Π). To prove (32), the
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resolvent identity gives the factor 1− 1
z−H0

V . This operator is invertible, because it is a finite rank
perturbation of 1 and any element in its kernel is an eigenvector of H = H0+V with eigenvalue z /∈ R,
namely the kernel is trivial. Using the identity (1−A)−1A = (1−A)−1(A− 1 + 1) = (1−A)−1− 1,
the inverse can be written as(

1− 1

z −H0

V

)−1

= 1 +
1

z −H0

Π∗ V Π Π

(
1− 1

z −H0

V

)−1

.

Since

Π

(
1− 1

z −H0

V

)
=
(
1−GΠ

0 (z)V Π
)

Π ,

it follows that

Π

(
1− 1

z −H0

V

)−1

=
(
1−GΠ

0 (z)V Π
)−1

Π ,

When combined with the resolvent identity this completes the proof. 2

3.2 Spectral analysis

Because the perturbation has finite range, the essential spectrum of H is given by the essential
spectrum of H0. However, H may have some discrete spectrum, which, since H is selfadjoint, is
given by the simple poles of the resolvent on the real axis. Thanks to Proposition 4, it follows
from equation (30) that the only way to get a polar singularity in the Green matrix of H is for
1 − GΠ

0 (z)V Π =
(
(V Π)−1 −GΠ

0 (z)
)
V Π to have a nontrivial kernel. This can be analyzed using the

determinant of 1 − GΠ
0 (z)V Π which is also called the perturbation determinant [Yaf]. Furthermore,

if E is an eigenvalue of H,

multiplicity of E = dim Ker
(
(V Π)−1 −GΠ

0 (E ± ı0)
)
. (33)

If E 6∈ [E−, E+], it is called an isolated eigenvalue while, if E ∈ (E−, E+), it is called an embedded
eigenvalue. For E = E±, a non-trivial kernel of (V Π)−1 − GΠ

0 (E±) leads to a threshold singularity
which will be dealt with below. With any E ∈ R is associated the subspace of C|Λ|

SE = Ker
(

(V Π)−1 −<e GΠ
0 (E)

)
.

Then the multiplicity of the eigenvalue E ∈ R/[E−, E+] of H is also equal to dim(SE). The embedded
eigenvalues are characterized in the next result (where the space FE is the space Fb for E = f(b)
used in Corollary 1).

Proposition 8 Let d ≥ 3 and V have finite range. Then E ∈ (E−, E+) is an embedded eigenvalue if
and only if F⊥E ∩ SE is non-trivial and the dimension of this intersection is equal to the multiplicity
of E. If E is analytic, the associated eigenvectors are decaying exponentially fast at infinity. If E is
a trigonometric polynomial, the the eigenvectors have a finite support.
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Remark 2 The last statement, namely that the eigenvectors have compact support, was proved in
a slightly different context in [KV]. 2

Proof: Let E = f−1(b) ∈ (E−, E+) be an embedded eigenvalue and v ∈ C|Λ| be the associated vector
in the kernel of (V Π)−1 − GΠ

0 (E ± ı0). Because =m(GΠ
0 (E − ı0)) ≥ 0 and V Π is self-adjoint, this is

equivalent to having =mGΠ
0 (E− ı0)v = 0 and (V Π)−1v = <eGΠ

0 (E)v, or alternatively v ∈ F⊥E ∩SE.
As shown in Lemma 5 and in Proposition 5, for any vector v ∈ F⊥E ∩ SE there is w ∈ `2(Zd) such
that v = (E1 −H0)w. Moreover w decays exponentially fast at infinity and has finite support if E
is a trigonometric polynomial. 2

Example 5 Let Λ be such that F⊥E 6= {0} (see Examples 2 to 4). Chosing V Π = (<eGΠ
0 (E))−1

leads to a Hamiltonian H with an embedded eigenvalue of multiplicity dim(F⊥E ). 2

Example 6 Let us present another way to construct Hamiltonians with embedded eigenvalues, again
by perturbing a periodic H0 with a polynomial energy band E . Let P = Π∗Π and Q = 1−Π∗Π and
then set V = −PH0Q − QH0P . Clearly V has finite range. Now H = H0 + V splits into a direct
sum of PH0P and QH0Q. The former has finite rank and admits a spectrum of eigenvalues with
eigenvectors supported in Λ. By the minimax principle, it follows that all these eigenvalues belong to
[E−, E+]. On the other hand, QH0Q is a finite rank perturbation of H0, so it has the same essential
spectrum. Hence the eigenvalues of PH0P are embedded indeed. 2

Now the threshold singularities will be investigated in more detail, still considering the case of
dimension d ≥ 3. They appear at either one of the band edges E± whenever (V Π)−1−GΠ

0 (E±±ı0) has
a non-trivial kernel, which is equivalent to SE± being non-trivial. Hence dim(SE±) is the multiplicity
of the threshold singularity at E±. Again it is easy to produce such singularities by an adequate
choice of V . Such a singularity can either be a threshold eigenvalue or a threshold resonance (the
latter is also called a half-bound state) depending upon whether the equation Hψ = E±ψ has a
square integrable solution ψ or not [New1, JK]. In order to analyze the threshold singularities let
the following space be defined

T± =
{
v ∈ C|Λ| | v̂ has a zero of order at least 5− d at k∗±

}
. (34)

The definition of T± is somewhat similar to F⊥b as given in Proposition 5. However, T± is likely to
be larger than the limit of F⊥b as b→ ±∞ because it tests zeros only at a single point. In addition,
T± coincides with C|Λ| for d ≥ 5.

Proposition 9 Let d ≥ 3 and V be of finite range. Then the multiplicity of E± as threshold eigen-
value of H is equal to dim

(
SE± ∩ T±

)
. Moreover, the multiplicity of E± as threshold resonance of H

is equal to dim
(
SE±

)
− dim

(
SE± ∩ T±

)
. In particular, for d ≥ 5 all threshold singularities lead to

threshold eigenvalues.

Proof: Let v ∈ SE± . Then V ΠGΠ
0 (E±)v = v and V (E±−H0)−1Π∗v = Π∗v. Hence there is a threshold

eigenvector whenever the equation Π∗v = (E± − H0)ψ admits a solution ψ ∈ `2(Zd). If so, then

27



Hψ = E±ψ indeed. Using the Fourier transform, the equation leads to the following solution ψ̂(k) =
v̂(k)/(E±−E(k)). The denominator satisfies E±−E(k) = 〈(k−k∗±)|E ′′(k∗±)|(k−k∗±)〉+O((k−k∗±)3).
This quadratic singularity is integrable in dimension d ≥ 3 so that indeed ψ ∈ `∞(Zd) is well-defined.
If d ≥ 5, then the singularity is also square integrable so that ψ ∈ `2(Zd) is an eigenvector. In
dimension d = 4, ψ̂ is square integrable only if v̂ has a zero at k∗±. In dimension d = 3 the zero has
to be of order 2. Combining this leads to the definition (34) and to the conclusion above. 2

3.3 The wave operator as an integral operator

The potential being finite rank, the Kato-Rosenblum theorem for trace class scattering theory [RS,
Yaf] implies that the wave operators

Ω± = s-lim
t→±∞

eıHt e−ıH0t ,

exist and are complete, that is, Ran(Ω+) = Ran(Ω−) = Pac(H) where Pac(H) is the projection on
the absolutely continuous subspace of H. Then the wave operators are partial isometries satisfying

Ω∗±Ω± = 1 , Ω±Ω∗± = Pac(H) = 1 − Ppp(H) , (35)

where Ppp(H) is the projection on the pure-point spectrum of H and the last equality holds because
there is no singular continuous spectrum. In addition, if one sets Ω(t) = eıHte−ıH0t, then Ω(t)eıH0s =
eıHsΩ(t− s) for all s ∈ R. Passing to the limit t→ ±∞ yields the intertwining relation

Ω± g(H0) = g(H) Ω± , g ∈ C0(R) .

Birman’s invariance principle [RS, Yaf] can now be expressed as follows. The function f : (E−, E+)→
R defined in (7) is smooth and has positive derivative. It is therefore admissible for the invariance
principle so that

Ω± = s-lim
t→±∞

Pac(H) eıf(H)t e−ıf(H0)t . (36)

However, H may have some spectrum outside (E−, E+) and possibly eigenvalues at E± so that f(H)
may not be well defined. However, using the completeness of the wave operators, Pac(H) can be
inserted discounting all eigenvalues. Since H has the same essential spectrum as H0, this eliminates
all ambiguity in the definition. It will allow to derive an explicit formula for Ω̂± = FΩ±F∗ which
will serve as a tool to calculate the wave operator and the scattering operator.

Proposition 10 The following formula holds

(
(Ω̂± − 1)φ

)
(k) = lim

ε↓0

∫
Td

dk′

(2π)d

∑
n,m∈Λ

〈n|T (E(k′)∓ ıε) |m〉 eı(k·n−k
′·m)

E(k′)∓ ıε− E(k)
φ(k′) .
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Proof: It follows from DuHamel’s formula and a Tauberian lemma [RS] that

Ω± = 1 ± ı s-lim
t→∞

∫ t

0

ds e±ıHs V e∓ıH0s = 1 ± ı s-lim
ε↓0

∫ ∞
0

ds e−εs e±ıHs V e∓ıH0s .

Hence (
(Ω̂± − 1)φ

)
(k) = ± ı lim

ε↓0

∫ ∞
0

ds e−εs
(
F e±ıHs V e∓ıH0sF∗ φ

)
(k) .

In the following, the notation Vl,m = 〈l|V |m〉 will be used. In addition,

〈m| e∓ıH0sF∗ |φ〉 =

∫
Td

dk′

(2π)d
e−ık

′·m e∓ıE(k′)s φ(k′)

Consequently the previous formula leads to

(
(Ω̂± − 1)φ

)
(k) = ±ı

∑
l,m∈Λ

Vl,m lim
ε↓0

∫ ∞
0

ds e−εs
(
F e±ıHs|l〉

)
(k)

∫
Td

dk′

(2π)d
e−ık

′·m e∓ıE(k′)s φ(k′) .

The integral over s can be performed to give

(
(Ω̂± − 1)φ

)
(k) = lim

ε↓0

∫
Td

dk′

(2π)d

∑
l,m∈Λ

Vl,m e
−ık′·m

(
F 1

E(k′)∓ ıε−H
|l〉
)

(k) φ(k′) .

In the previous expression, it becomes possible to compute the part in the parenthesis. For indeed,
using the resolvent identity as in Lemma 8 yields

1

z1−H
Π∗ =

1

z1−H0

Π∗
1

1− V ΠGΠ
0 (z)

,

and remarking that l ∈ Λ. Hence, passing to the Fourier space leads to(
F 1

z −H
|l〉
)

(k) =
∑
n∈Λ

1

z − E(k)
eık·n 〈n|

(
1− V ΠGΠ

0 (z)
)−1 |l〉 .

Replacing this in the above expression for Ω̂± − 1 completes the proof. 2
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3.4 The wave operator in the REF representation

In this section, the REF representation will be used to calculate the wave operator Ω̃± = UΩ̂±U∗ in
dimension d ≥ 3. It is an operator on L2(R) ⊗ L2(Σ, ν). From Proposition 10, the definition (20),
the change of variables formula (15) and the definition (27) of the states ψm,b, it follows that

((Ω̃± − 1)φ)b = lim
ε↓0

∫
db′

∑
n,m∈Λ

|ψn,b〉
〈n|T (f−1(b′)∓ ıε) |m〉
f−1(b′)∓ ıε− f−1(b)

〈ψm,b′|φb′〉 ,

where 〈ψm,b′ |φb′〉 stands for the inner product in the Hilbert space L2(Σ, ν) and the integral of b′

carries over R. Thanks to Corollary 1, the sums over n and m can be computed to give

((Ω̃± − 1)φ)b = lim
ε↓0

∫
db′

π

F (f−1(b))
1
2 F (f−1(b′))

1
2

f−1(b′)∓ ıε− f−1(b)
Π∗b
∣∣=mGΠ

0 (f−1(b))
∣∣ 1

2
(
e
b′
2 + e−

b′
2

)
(Õ±φ)b′ , (37)

where Õ± =
∫
db Õ±,b with

Õ±,b = lim
ε↓0

1

e
b
2 + e−

b
2

TΠ(f−1(b)∓ ıε)
∣∣=mGΠ

0 (f−1(b))
∣∣ 1

2 Πb . (38)

It is part of the proof of the following result to show that the limit in (38) exists and that the
expression (31) for the T -matrix can be replaced to give

Õ±,b =
1

e
b
2 + e−

b
2

(
(V Π)−1 −<eGΠ

0 (f−1(b)) ∓ ı
∣∣=mGΠ

0 (f−1(b))
∣∣)−1 ∣∣=mGΠ

0 (f−1(b))
∣∣ 1

2 Πb . (39)

Theorem 2 Let d ≥ 3 and let V have finite support. In addition, F is chosen as in (3) and the
following will be assumed:

(i) If d = 3, the threshold singularities have multiplicity at most 1 and any vector w± in the kernel
of (V Π)−1 −GΠ

0 (E±) has a Fourier transform satisfying ŵ±(k∗±) 6= 0.

(ii) If d = 4, there are no threshold singularities.

(iii) The embedded eigenvalues lie neither on the critical values of E nor in the set V described in
Proposition 6. The corresponding zeros of b ∈ R 7→ (V Π)−1−GΠ

0 (f−1(b)) are of first order in the
real part.

Then the operators Õ±,b are well-defined, continuous in b and uniformly bounded. The wave operators
are given by

Ω̃± = 1 +
∑
κ=±1

ı Π∗
B̃

∣∣=mGΠ
0 (f−1(B̃))

∣∣ 1
2 eκ

B̃
2

(
±1 +

eπÃ − κ ı
eπÃ + κ ı

)
Õ± . (40)
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Formula (40) shows that the wave operator can be calculated in terms of Õ± and the dilation

operator Ã. It is similar to those obtained by Kellendonk and Richard for continuous scattering
systems [KR2, KR3, KR4], however, we stress that we also allow for embedded eigenvalues, a fact that
is closely linked to proving that the inverse in (39) exists. In fact, if the kernels of (V Π)−1−<eGΠ

0 (E)
and of =mGΠ

0 (E) have a non-trivial intersection, the associated pole in (39) is attained on the

orthogonal complement of the range Fb of
∣∣=mGΠ

0 (f−1(b))
∣∣ 1

2 and thus one can prove that the inverse
on Fb exists (in the sense of Lemma 12). Energies at which this happens are exactly the embedded
eigenvalues by Proposition 8. The intersection of the kernels is supposed to be a regular singular
point and this allows to argue for the continuity of Õ±,b. Hypothesis (iii) holds generically for V Π

(within the non-generic situations of embedded eigenvalues). Another comment is that the condition
(i) imposed for d = 3 implies that the threshold singularity is a threshold resonance. This is because,
by Proposition 9, ŵ±(k∗±) 6= 0 implies SE±∩T± = {0}. Again this is the generic behavior in dimension
d = 3. It is possible to treat threshold singularities for d = 4, but this is technically more involved
and not carried out here.

Proof of Theorem 2: Let us first suppose that Õ± are well-defined and bounded with fibers Õ±,b
depending continuously on b, and then show how (40) follows from (37). Thanks to the formulas (7),
E(θb(σ)) = f−1(b) = Er + ∆ tanh(b) and F (f−1(b)) = ∆ cosh−2(b), a bit of algebra now leads to

((Ω̃± − 1)φ)b = Π∗b
∣∣=m GΠ

0 (f−1(b))
∣∣ 1

2

∫
db′

π

1

sinh(b′ − b)∓ ı0
(
e
b′
2 + e−

b′
2

)
(Õ±φ)b′ .

In the previous formula, Õ±φ is a vector in the Hilbert space L2(R)⊗C|Λ|. As previously let Ã = −ı∂b
be the generator of the translation group in L2(R)⊗L2(Σ, ν) as well as L2(R)⊗C|Λ|. Changing the

integration variable b′ to u = b′ − b leads to (Õ±φ)u+b = (eıÃuÕ±φ)b. Hence(
(Ω̃± − 1)φ

)
b

=
∑
κ=±1

Πb

∣∣=m GΠ
0 (f−1(b))

∣∣ 1
2 eκ

b
2

∫
du

π

1

sinh(u)∓ ı0
eκ

u
2

(
eıÃuÕ±φ

)
b
.

Now (40) is obtained from the following identity:∫
du

ıπ

1

sinh
(
u
)
∓ ı0

eκ
u
2 eıÃu = ±1 +

eπÃ − κ ı
eπÃ + κ ı

.

It remains to show the above mentioned properties of the operators Õ±,b defined in (39). We first
check that for every b ∈ R they are well-defined and continuous in b. This analytical issue is tied to
embedded eigenvalues. In fact, away from them there would be nothing to prove because the inverse
in (39) exists by (33) and the fact that A + ıB is invertible for any invertible operator A = A∗ and
non-negative operator B ≥ 0 (see the proof of Lemma 12). Now focussing on embedded eigenvalues,
let us set

Ab = (V Π)−1 −<eGΠ
0 (f−1(b)) , Bb =

∣∣=mGΠ
0 (f−1(b))

∣∣ .
These matrices Ab and Bb have nothing to do with the dilation operator and the rescaled energy
operator, and only appear again in the following lines and Appendix B. Then Ab is self-adjoint and
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Bb is non-negative, and by Proposition 4(i) both are real analytic in b as long as f−1(b) is not a
critical value of E . Now the properties of hypothesis (iii) of Theorem 2 guarantee that Lemma 13 of
Appendix B can be applied because, in particular, the zeros of b ∈ R 7→ Ab + ıBb are of first order in
Ab. This lemma implies that Õ±,b is even analytic for b = f−1(E) away from the set E(S∗) of critical
energies and away from the exceptional set V of Proposition 6. Continuity at the latter points follows
again from Proposition 4 because there are no embedded eigenvalues there. In particular, let us also
note that the dimension of Πb changes at points b corresponding to energies in V, but in (39) this

does not lead to discontinuities due to the factor |=mGΠ
0 (f−1(b))| 12 directly following Πb.

Now we check that the operator Õ± seen as a linear map from L2(R)⊗ L2(Σ, ν) to L2(R)⊗C|Λ|
is actually bounded. This means that we have to analyze the limits b → ±∞ of Õ±, which depend
on the behavior at the thresholds. Here the factor e

b
2 + e−

b
2 introduced in (38) will turn out to be

crucial. We start by expanding the inverse in (39) around the band edge E± using items (iv) and
(v) of Proposition 4:

(V Π)−1 −GΠ
0 (f−1(b)∓ ı0) = (V Π)−1 −GΠ

0 (E±) ∓ ı D±MΠ
± e
−|b|(d−2) +O(e−|b|d, |b|e−2|b|) . (41)

If there is no threshold singularity, then by definition (V Π)−1 − GΠ
0 (E±) is invertible and thus the

inverse in (39) remains bounded as b→ ±∞ and the other factors lead to limb→±∞ Õ±,b = 0. If there
is a threshold singularity of multiplicity dim(SE±) = 1 in d = 3, the operator (V Π)−1 −GΠ

0 (E±) has
a kernel of dimension 1 spanned by some vector w±. If, in addition, w± is not orthogonal to the
one-dimensional projection MΠ

± , namely if 〈vΠ
±|w±〉 = |Λ|− 1

2 ŵ(k∗±) 6= 0, then
(
(V Π)−1 −GΠ

0 (f−1(b)∓
ı0)
)−1

= O(e|b|). As
∣∣=mGΠ

0 (f−1(b))
∣∣ 1

2 = O(e−
|b|
2 ) (because d = 3) the added prefactor (e

b
2 + e−

b
2 )−1

assures that Õ±,b remains bounded as b → ±∞. (Its convergence is analyzed in Proposition 12
below.)

For d ≥ 5, the term of order e−|b|(d−2) in (41) is dominated by the terms of order e−2|b|. Hence,
(41) becomes rather

(V Π)−1 −GΠ
0 (f−1(b)∓ ı0) = (V Π)−1 −GΠ

0 (E±)−NΠ
± e
−2|b| +O(e−3|b|) ,

which follows also from Proposition 4. In this case, NΠ
± is invertible so that for an arbitrary thresh-

old singularity
(
(V Π)−1 − GΠ

0 (f−1(b) ∓ ı0)
)−1

= O(e2|b|), even in the most singular case where

(V Π)−1 = GΠ
0 (E±). This is compensated in (39) by the other factor (e

b
2 +e−

b
2 )−1

∣∣=mGΠ
0 (f−1(b))

∣∣ 1
2 =

O(e−
|b|
2

(d−1)). Consequently Õ± is bounded for d ≥ 5. This concludes the proof. 2

3.5 The scattering operator

Whenever the wave operators are complete, the scattering operator is defined by:

S = Ω∗+Ω− .
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It is unitary and satisfies [S,H0] = 0. Hence, in the REF representation, [S̃, B̃] = 0 and thus

S̃ =
∫
db S̃b with unitary operators S̃b on L2(Σ, ν). The intertwining relation and the invariance

principle (36) imply that for any admissible function f with f ′ > 0, one has

s- lim
t→±∞

eıtf(H0) Ω± e
−ıtf(H0) = Ω∗±Ω± = 1 , s- lim

t→∓∞
eıtf(H0) Ω± e

−ıtf(H0) = Ω∗∓Ω± .

The second expression is either S or S∗. Let now f be chosen as in (7). In the REF representation,
Proposition 3 then leads to

s- lim
t→±∞

eıtB̃ Ω̃± e
−ıtB̃ = 1 , s-lim

t→∞
eıtB̃ Ω̃− e

−ıtB̃ = S̃ , s- lim
t→−∞

eıtB̃ Ω̃+ e
−ıtB̃ = S̃∗ . (42)

Using the explicit formula for Ω̃− given in Theorem 2 now leads to an explicit expression for the
on-shell scattering matrix. The structure of such formulas (in particular, the EF representation of the
formula (44) in the proof below) is well-known and has appeared in various guises (see [New1, Yaf]
for a list of references).

Theorem 3 Let the assumptions of Theorem 2 hold. Then the on-shell scattering matrix S̃b is a
unitary operator on L2(Σ, ν) depending continuously on b and given by

S̃b = (1− Π∗bΠb) + Π∗b(Cb − ı)(Cb + ı)−1Πb ,

where the selfajoint L× L matrix Cb : PbC|Λ| → PbC|Λ| is defined by

Cb = Pb
∣∣=mGΠ

0 (f−1(b))
∣∣− 1

2

(
(V Π)−1 −<eGΠ

0 (f−1(b))
)∣∣=mGΠ

0 (f−1(b))
∣∣− 1

2 Pb .

Proof: For any function g the following formula holds eıtB̃g(Ã)e−ıtB̃ = g(Ã− t). The limits t→ ±∞
can be taken whenever g has limits at infinity. The function appearing in (40) is of that type. The

middle formula in equation (42) and the expression of Ω̃− given in Theorem 2 leads to the calculation

of S̃, namely

S̃b = 1 +
∑
κ=±1

ı Π∗b
∣∣=mGΠ

0 (f−1(b))
∣∣ 1

2 eκ
b
2 (−2) Õ±,b , (43)

Because Theorem 2 states that Õ±,b is continuous in b, this formula already shows that S̃b is contin-
uous in b. Using equation (39), it now follows that

S̃b = 1− 2 ı Π∗b
∣∣=mGΠ

0 (f−1(b))
∣∣ 1

2

(
(V Π)−1 −GΠ

0 (f−1(b) + ı0)
)−1 ∣∣=mGΠ

0 (f−1(b))
∣∣ 1

2 Πb .

After simplification, one gets
S̃b = 1− 2 ı Π∗b(Cb + ı)−1Πb . (44)
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This allows to prove the claim. 2

Similar formulas hold for the EF-representation of the scattering matrix. The comments made
in Section 2.5 and the results of Theorem 3 lead to (with CE = Cb for b = f(E)),

◦
SE = S̃f(E) = (1− Π∗EΠE) + Π∗E(CE − ı)(CE + ı)−1ΠE .

It is now possible to get results on the asymptotics of the scattering matrix.

Proposition 11 Let the assumptions of Theorem 2 hold.

(i) If there are no threshold singularities or if d ≥ 5, then limb→±∞ S̃b = 1.

(ii) If for d = 3 there is a threshold singularity of multiplicity 1 at E± and the extremum of E at E±
is isotropic in the sense that E ′′(k∗±) is a multiple of the identity, then

lim
b→±∞

S̃b = 1− 2 |ψ±〉 〈ψ±| ,

where ψ± ∈ L2(Σ, ν) are the states given in Lemma 3.

Proof. (i) If there are no threshold singularities, then limb→±∞ Õ±,b = 0 as was shown in Section 3.4.

As
∣∣=mGΠ

0 (f−1(b))
∣∣ 1

2 eκ
b
2 is bounded, it follows from (43) that limb→±∞ S̃b = 1. For d ≥ 5, it has

been shown that Õ±,b is uniformly bounded even in the presence of threshold singularities. As the

factor
∣∣=mGΠ

0 (f−1(b))
∣∣ 1

2 eκ
b
2 vanishes in the limits b → ±∞, the same conclusion holds thanks to

equation (43).

(ii) For d = 3, it is assumed that there is a threshold singularity of multiplicity 1 and the extrema
are isotropic. Starting from (44) the inverse of Cb + ı can be expanded using Proposition 4 to give

(Cb + ı)−1 = D± e
−|b|MΠ

±

(
(V Π)−1 −<eGΠ(E±) + ıD± e

−|b|MΠ
±

)−1

MΠ
± +O(e−

|b|
2 )

= − ıMΠ
± +O(e−

|b|
2 ) ,

where, in the second equality, Lemma 9 stated below is used. It can indeed be applied thanks to the
hypothesis stated in Theorem 2. On the other hand Rbv

Π
± = ψ0,b + O(e∓b) so that it follows that

Π∗bM
Π
±Πb = ‖ψ0,b‖−2 |ψ0,b〉〈ψ0,b|+O(e∓b). Hence Lemma 3 allows to conclude the proof. 2

Lemma 9 Let P ∈ Mat(n×n,C) be a one-dimensional orthogonal projection and A = A∗ ∈ Mat(n×
n,C) have a one-dimensional kernel not lying in the kernel of P . Then

λP (A+ ıλP )−1P = − ı P +O(λ) .

Proof: This follows from a short calculation using Cramer’s rule. 2
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3.6 The contributions of the threshold singularities

Just as the scattering operator is obtained as a rescaled energy boost of the wave operator in (42),
it is natural to study the dilation operator boost of the wave operator. As the scattering operator is
obtained as boost of Ω̃−, it is sufficient to consider

R̃± = s-lim
t→±∞

eıtÃ Ω̃− e
−ıtÃ .

It ought to be remarked that the limits in R̃± approach the critical values E± respectively. This is

because the identity eıtÃg(B̃)e−ıtÃ = g(B̃+ t) holds for any function g. From the definition it follows

that [R̃±, Ã] = 0 so that R̃± =
∫
da R̃±,a with operator fibers R̃±,a acting on L2(Σ, ν). Since the

operator Ã has continuous spectrum, it follows that limt→±∞ e
ıtÃKe−ıtÃ = 0 for any compact operator

K. In particular, since Ω− is unitary modulo a compact operator, R̃± is unitary. Consequently each
R̃±,a is unitary. The following operators are associated to R̃± in a similar manner as the time delay
is associated to the scattering operator:,

T̃± = ± 1

ı
(R̃±)−1 [B̃, R̃±] .

Proposition 12 Let the assumptions of Theorem 2 hold.

(i) If there are no threshold singularities or if d ≥ 5, then R̃± = 1 and T̃± = 0.

(ii) If d = 3, if there is a threshold resonance at E± of multiplicity 1 and if the extrema of E are
isotropic, then

R̃±,a =
(
1 − |ψ±〉〈ψ±|

)
+

eπa ∓ ı

eπa ± ı
|ψ±〉〈ψ±| , Tr(T±) =

1

2
.

Proof: Statement (i) is a consequence of the proof of Theorem 2 and the arguments below, so let us
focus on the case d = 3. Equation (40) gives an explicit expression of the wave operator. Each term
in the sum over κ = ±1 in its r.h.s. is the product of three terms that can be treated separately
under the boost action. The first factor is

lim
b→±∞

Π∗b
∣∣=mGΠ

0 (f−1(b))
∣∣ 1

2 eκ
b
2 = (D±)

1
2 δκ,± |ψ±〉〈vΠ

±| , (45)

where δκ,±1 is the Kronecker delta. Details for the proof of the second equality are similar to the
proof of Proposition 11. Taking into acount the Ket 〈vΠ

±| in (45) permits to treat the last factor
using Lemma 9. This gives

lim
t→±∞

eıtÃ 〈vΠ
±| Õ± e−ıtÃ = lim

b→±∞
〈vΠ
±|
(

(V Π)−1 −GΠ
0 (f−1(b) + ı0)

)−1
∣∣=mGΠ

0 (f−1(b))
∣∣ 1

2

e
b
2 + e−

b
2

Πb ,

The limit on the r.h.s. is given by ı(D±)−
1
2 〈ψ±|. Replacing these factors leads to the formula for

R±,a. Using the integral over a, the trace of T± is given, up to the sign, by the rotation number of
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the map a ∈ R 7→ (eπa ∓ ı)/(eπa ± ı) ∈ S1. The latter is equal to ± 1
2
. The sign in the definition of

T± compensate the previous sign leading to the final result. 2

3.7 The time delay operator

The time delay operator T is the derivative of the scattering matrix w.r.t. the energy (the notation
T should not be confused the T -matrix). More formally, it is defined by T = 1

ı
S−1[A, S] whenever

S is differentiable w.r.t. to the dilation A. In the REF it becomes

T̃ =

∫
db T̃b , T̃b =

1

ı
(S̃b)

−1∂bS̃b ,

while in the EF representations it is given by

◦
T =

∫ E+

E−

dE
◦
TE ,

◦
TE =

1

ı
(
◦
SE)−1∂E

◦
SE .

The total time delay is the trace of T . The formula given in the following result is sometimes called
the spectral property of the time-delay [TO, New1]

Theorem 4 Let the assumptions of Theorem 2. In addition, suppose that FE = C|Λ| for almost all
E and that there are no threshold eigenvalues. Then, for almost all E ∈ [E−, E+],

TrL2(Σ,ν)(
◦
TE) = lim

ε↓0
2 =m Tr`2(Zd)

(
1

E − ıε−H
− 1

E − ıε−H0

)
. (46)

Remark 3 The condition FE = C|Λ| for almost all E, implies that H has no embedded eigenvalues
(see Proposition 8). If H has embedded eigenvalues at energy E with multiplicity n(E), then the
r.h.s. of equation (46) must be modified by subtracting n(E)/ε to the trace to compensate for the
singularity occurring at this energy. One should also be able to deal with a threshold singularity by
subtracting the adequate contribution. However, no details are provided here. 2

Remark 4 The previous formula for the total time delay is well-known for potential scattering
when H0 is the Laplacian in Rd (see [CN] for a list of references). It can be proved by a direct
calculation in the REF representation (following the lines of [TO]) or by a computation inspired by
the Birman-Krein formula [Yaf] for the scattering phase, an approach used below. 2

Proof of Theorem 4: The following notation will be used ΠE = Πf(E), CE = Cf(E) etc. From
equation (44), it follows that

1

2ı
∂E
◦
SE = −∂EΠ∗E(CE + ı)−1ΠE + Π∗E(CE + ı)−1∂ECE(CE + ı)−1ΠE − Π∗E(CE + ı)−1∂EΠE .
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The equation ΠEΠ∗E = 1C|Λ| implies ∂EΠEΠ∗E = −ΠE∂EΠ∗E. Hence,

TrL2(Σ,ν)(
◦
TE) =

1

ı
TrFE

(
ΠE(

◦
SE)∗Π∗E ΠE∂E

◦
SEΠ∗E

)
= 2 TrC|Λ|

(
(C2

E + 1)−1∂ECE
)
.

This can be rewritten as

TrL2(Σ,ν)(
◦
TE) =

1

ı
∂E ln det

(
CE − ı
CE + ı

)
.

Therefore dividing out the imaginary part of the Green function appearing in the definition of CE
(see Theorem 3) gives

TrL2(Σ,ν)(
◦
TE) =

1

ı
∂E ln det

(
PE
(
(V Π)−1 −GΠ

0 (E − ı0)
)
PE
(
PE((V Π)−1 −GΠ

0 (E + ı0))PE
)−1
)

= 2 =m ∂E ln det
(
PE((V Π)−1 −GΠ

0 (E − ı0))PE
)
.

On the other hand, using (32) and the cyclicity of the trace, leads to

Tr`2(Zd)

(
(z −H)−1 − (z −H0)−1

)
= TrC|Λ|

(
Π(z −H0)−2Π∗

(
(V Π)−1 −GΠ

0 (z)
)−1
)
.

Since ∂zG
Π
0 (z) = −Π(z −H0)−2Π∗, it follows that

Tr`2(Zd)

(
(z −H)−1 − (z −H0)−1

)
= ∂z TrC|Λ|

(
ln((V Π)−1 −GΠ

0 (z)
))
.

This leads to the identity. 2

3.8 A Levinson-type theorem

Theorem 5 Let the assumptions of Theorem 2 hold. Further let N = Tr(Ppp) be the number of
bound states of H, including embedded eigenvalues and threshold eigenvalues. Then

1

2π
Tr`2(Zd)(T ) + N =

{
− 1

2
dim(SE+)− 1

2
dim(SE−) if d = 3 ,

0 if d ≥ 4 ,
(47)

where dim(SE±) ∈ {0, 1} is the multiplicity of the threshold resonance.

Two proofs will be provided. The first one will require stronger hypothesis to show how the
argument principle combined with the spectral property of the time delay can be used as in most
standard references [RS, New1]. It might be possible to lift these hypothesis with more technical
effort (see Section 3.9 where this is done for a point interaction). The second proof requires only the
stated hypothesis. It is based on the approach proposed by Kellendonk and Richard [KR1] and uses
on the index theorem for C∗-algebras.

First proof of Theorem 5: It will be assumed that there are no embedded eigenvalues and no
threshold singularities and that FE = C|Λ| for almost all E (these assumptions hold for the case of a
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single site impurity). The number N of eigenvalues is obtained by counting the poles of the resolvent
using the Cauchy formula and a contour integration. The contour is given by two circles, one large
counterclockwise oriented circle γ around the spectrum of H and a second small clockwise oriented
circle Γ around the spectrum of H0 (but not touching it). Then

N =

∮
Γ+γ

dz

2πı
Tr`2(Zd)

(
(z −H)−1 − (z −H0)−1

)
. (48)

The resolvent identity implies that the contribution of γ vanishes in the limit where its radius goes
to infinity. Then let Γ converge to the concatenation of the two intervals [E− + ı0, E+ + ı0] and
[E− − ı0, E+ − ı0]. Since it has been assumed that there is no threshold singularity, the regularity
of the Green function at the band edges implies that the small circle connecting these contours near
the band edges have a vanishing contribution in the contour integral. Thus

N =

∫ E+

E−

dE

2πı
Tr`2(Zd)

(
1

E + ı0−H
− 1

E + ı0−H0

− 1

E − ı0−H
+

1

E − ı0−H0

)
.

The formula for the total time delay, proved in Theorem 4, gives

N = − 1

2π

∫ E+

E−

dE TrL2(Σ,ν)(
◦
TE) .

The r.h.s. is nothing but the trace of T expressed in the EF representation, leading to the result. 2

Second proof of Theorem 5: As a preamble let us construct an extension the algebra C0(R) of
the continuous functions on R vanishing at +∞ and −∞. Then set C∞(R) = C(R) where R =
{−∞}∪R∪{+∞} which are the continuous functions having limits at +∞ and −∞. The evaluation
map ev is the ∗-homomorphism defined by ev : g ∈ C(R) 7→ ev(g) = (g(+∞), g(−∞)) ∈ C2 = C⊕C.
The kernel of this map is precisely C0(R) leading to a short exact sequence 0→ C0(R) ↪→ C∞(R)

ev→
C ⊕ C → 0. Next let us consider a two-dimensional version of this extension. Let C∞(R2) be
those continuous functions on R2 having a continuous limit function built from the limits of f in
the directions of R2. These directions can described by S1 so that one obtains an exact sequence
is 0 → C0(R2) ↪→ C∞(R2)

ev→ C(S1) → 0. Of course, C∞(R2) is isomorphic to those elements of
C∞(R)⊗C∞(R) having coinciding limits in the four corners (associated to two successive evaluations
at ±∞), and then the image of the evaluation is rather a continuous function on the square instead
of C(S1). Now the exact sequence relevant for the proof of Levinson’s theorem is a non-commutative
analog of this, where the two commuting coordinate functions in C∞(R)⊗C∞(R) are replaced by the

operators Ã and B̃ obeying to the canonical commutation relation, and then everything is tensorized
with compact operators.

Let J be the C∗-algebra generated by operators of the form f(Ã) ⊗ K and g(B̃) ⊗ K with
f, g ∈ C0(R) and K in the set K of compact operators on L2(Σ, ν). Let E denote the extension of J
obtained by allowing f and g to have nonzero finite limits at ±∞. Evaluation at infinity of E gives
the algebra A which is the subalgebra of

(
C∞(Ã) ⊕ C∞(B̃) ⊕ C∞(Ã) ⊕ C∞(B̃)

)
⊗ K of operators
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having coinciding limits in the four corners. Thus one obtains the following short exact sequence
(see [KR1]):

0 → J ↪→ E
ev→ A → 0 ,

This short exact sequence induces a six-term exact sequence in K-theory [Bla], leading to a canonical
index map Ind : K1(A)→ K0(J). As it turns out, using the unitary operators UF where U is defined
in equation (20) and F is the Fourier transform, the elements of J are mapped into compact operators
on `2(Zd). Therefore K0(J) = Z [Bla]. Hence the index is an integer. At this level of generality, the
index is obtained as follows. Given a unitary element S in A, it is lifted to an element Ω ∈ E such
that ev(Ω) = S. Then, ev(ΩΩ∗ − 1) = 0 = ev(Ω∗Ω− 1). This means that, if Ω can be chosen to be
a partial isometry, then both ΩΩ∗ − 1 and Ω∗Ω− 1 are compact projections. Therefore the index of
S is defined by Ind(S) = Tr(ΩΩ∗−Ω∗Ω) which is indeed an integer. At a more computational level,
if there is a derivation ∂ acting in A and if there is a faithful ∂-invariant trace on A, the index of S
is computed as Ind(S) = Tr(S−1∂S)/(2π) [Bla].

In the present situation, combining the S-matrix, the operators R± and 1, one for each side of
the square at infinity, make up a unitary element S̃tot = S̃ ⊕ R̃+⊕ 1⊕ R̃− of A. In addition, in both
cases, thanks to equation (42) and to the definition of R± (see Section 3.6), this unitary operator
can be seen as ev(Ω−) where Ω− is one of the wave operators. If it can be proved that Ω− ∈ E, then
Levinson’s theorem follows immediately from the following two remarks:

(i) Ω∗−Ω− = 1 and 1− Ω−Ω∗− is the projection onto the pure point spectrum of H.

(ii) The algebra A admits a trace TrA which consists of the trace on K followed by the integrals over
a and b respectively along each side of the square at infinity. In addition, the derivatives ∂a and ∂b
define a derivation ∂A acting on A which leaves TrA invariant. These derivatives are also given by
the commutators with Ã or B̃ respectively.

Therefore, the index of S̃tot is given by

Ind(S̃tot) = Tr (ΩΩ∗ − Ω∗Ω) =
1

2π
TrA

(
(S̃tot)

−1∂AS̃tot

)
,

which is exactly equation (47) when written in the language used previously.

The main remaining point is to prove that the wave operators are elements of the C∗-algebra E.
In some sense, most of the technical preparations above have been dedicated to proving precisely
this point. The formula in Theorem 2 shows that Ω̃± is given by a concatenation of three operators:
first the operators Õ± =

∫
db Õ±,b which by Theorem 2 has fibers Õ±,b depending continuously on b

with limits at b = ±∞ (due to Proposition 12), then a smooth function of Ã which also has limits at
infinity, and finally the imaginary part of the Green matrix also having these properties. One notes
that the limits in the four corners coincide due to Propositions 11 and 12. In conclusion, Ω̃− ∈ E. 2
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3.9 Example of a point interaction

Here we discuss the example of the perturbation V = λ |0〉〈0|, λ ∈ R, localized on one site. Hence
Π = |0〉〈0|, Λ = {0} and, one has L = |Λ| = 1 even if E is a polynomial. Furthermore GΠ

0 (z) = G0(z)
is a number (and not a matrix of larger size). The behavior of the real and imaginary part of
G0(E − ı0) can directly be read off Proposition 4. Note that, in particular, the imaginary part does
not vanish on (E−, E+). Let us introduce the critical coupling constants λ± = 1/G0(E±). Note that
λ− < 0 and λ+ > 0. Because the perturbation determinant is 1− λG0(z), the operator H = H0 + V
has an eigenvalue smaller than E− if and only if λ < λ−, and an eigenvalue larger than E+ if and
only if λ > λ+. If λ = λ± there is a threshold singularity at E±. In dimension d = 3 and d = 4 this
singularity is a threshold resonance, whereas for d ≥ 5 it is a threshold eigenvalue. There is never an
embedded eigenvalue (also not for polynomial E).

The scattering matrix given by (44) differs from the identity only on a one-dimensional subspace:

◦
SE = (1− Π∗EΠE) +

λ−1 −G0(E − ı0)

λ−1 −G0(E + ı0)
Π∗EΠE .

Hence

Tr(
◦
TE) =

1

ı
∂E ln

(
λ−1 −G0(E − ı0)

λ−1 −G0(E + ı0)

)
.

From this one readily deduces the winding number Tr(T ) if λ 6= λ±. For the exceptional cases
of threshold singularities, we need more precise information about the Green function as given in
Proposition 4. For d = 3 and d ≥ 5 one has

G0(E − ı0) = G0(E±) +N±(E± − E) + ıD±|E − E±|
d−2

2 + o(E − E±) .

The constants satisfy D± > 0, and, for d ≥ 5, one also has N± < 0. Hence, if ϕ(E) denotes the phase
of λ−1

± −G0(E − ı0), one has ϕ(E+) = 0 and ϕ(E−) = π with one loop in the clockwise orientation
for d ≥ 5, while in d = 3 one has ϕ(E+)−ϕ(E−) = π

2
for λ = λ±. Hence the total scattering phase is

Tr(T ) =

∫ E+

E−

dE Tr(
◦
TE) = 2π


0 for λ ∈ (λ−, λ+) ,
− 1 for λ < λ− or λ > λ+ ,
− 1 for λ = λ± and d ≥ 5 ,
− 1

2
for λ = λ± and d = 3 .

This fits with Levinson’s theorem. In particular, in the threshold case for d ≥ 5 there is a threshold
eigenvalue, while for d = 3 there is a threshold resonance (no bound state) but the correction on the
r.h.s. of (47) is −1

2
because dim(SE±) = 1.

It is also instructive to complete the argument principle proof in the situation λ ∈ [λ−, λ+]. We
start from (48) and remove γ as above. Replacing the resolvent identity (32), then gives

0 =

∫
Γ

dz

2πı

〈0|(z −H0)−2|0〉
λ−1 −G0(z)

=

∫
G0(Γ)

dG

2πı

1

λ−1 −G
,
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where in the second equality we used 〈0|(z − H0)−2|0〉 = −∂zG0(z). Now let us analyze the path
G0(Γ) using the results of Proposition 4. It is always a closed curve going through the real axis twice
exactly at G0(E−) and G0(E+). It is positively oriented and the limit curve is approached from the
inside (as ε ↓ 0). The dimension d now leads to the following crucial differences as to how the real
axis is crossed. For d = 3 it crosses transversally, as for an circle, while for d ≥ 4, it is a spike
pointing inward. Hence, if λ = λ±, the singularity leads to a contribution equal to 1

2
for d = 3 and

equal to 1 for d ≥ 4. In particular, this shows that Tr(T ) = −1 for λ = λ± also for d = 4, a case
that was not covered by Theorem 5.

A Boundary values of the Borel transform

For the convenience of the reader, this section is a reminder of properties of the Borel transform of a
function defined on the real line. The first result is often called the Plemelj-Privalov theorem [Mus].

Lemma 10 Let ρ : R → C be a Hölder continuous function of exponent α ∈ (0, 1] with compact
support. Then, for any β such that 0 < β < α, its Borel transform

Gρ(z) =

∫
R

ρ(e) de

z − e
(49)

is holomorphic in C \ supp(ρ) and its boundary value on the real axis is Hölder continuous with
exponent β. If ρ is real-valued, then

Gρ(E ± ı0) = ∓ ı ρ(E) + −
∫
R

ρ(e) de

E − e
where −

∫
denotes the Cauchy principal value.

Proof: The holomorphy of Gρ outside supp(ρ) is a standard result that will not be proved here. By
decomposing ρ into its real and imaginary part, if necessary, there is no loss of generality in assuming
that ρ is real-valued. For ε > 0 and E ∈ R, Gρ(E + ıε) is given by

Gρ(E ± ıε) =

∫
R
de

ρ(e)(E − e∓ ıε)
(E − e)2 + ε2

= Rρ(E, ε) ∓ ı Iρ(E, ε) ,

where

Iρ(E, ε) =

∫
R
de

ρ(e)ε

(E − e)2 + ε2
, Rρ(E, ε) =

∫
R
de

ρ(e)(E − e)
(E − e)2 + ε2

. (50)

The first term admits πρ(E) as a limit as ε ↓ 0. This is because, using the change of variables
e = E + εx and the Lebesgue dominated convergence theorem, gives

lim
ε↓0

Iρ(E, ε) = lim
ε↓0

∫
R

dx

x2 + 1
ρ(E + εx) = ρ(E)

∫
R

dx

x2 + 1
= π ρ(E) . (51)
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Similarly, using the change of variable u = e− E and the symmetry u 7→ −u, one obtains

Rρ(E, ε) =

∫ ∞
0

u du

u2 + ε2
(
ρ(E − u)− ρ(E + u)

)
. (52)

For all a > 0, the part of the integral corresponding to 0 < a ≤ u is also Hölder continuous of
exponent α w.r.t. E, thanks to Lebesgue’s dominated convergence theorem. In particular, if E is
not in the support of ρ, the integral over u never reaches u = 0 so that Rρ(E) is Hölder continuous
outside the support of ρ. However, if ρ is real valued, Rρ is the restriction to the complement of the
support of ρ (in the real line) of the real part of an holomorphic function and is therefore analytic.
On the other hand, since ρ is Hölder continuous of exponent α and with compact support, it follows
that there is a constant K > 0 for which |ρ(E + δ ± u) − ρ(E ± u)| ≤ Kδα uniformly w.r.t. E and
u. In particular, |ρ(E − u)− ρ(E + u)| ≤ K(2u)α and

|ρ(E + δ + u)− ρ(E + u)− ρ(E + δ − u) + ρ(E − u)| ≤ 2K min{δα, (2u)α} ≤ 21+α−βKδβuα−β ,

for any 0 < β < α. Using this estimate inside the part of the integral for which u ∈ [0, 1] and thanks
to the dominated convergence theorem, it follows that limε↓0Rρ(E, ε) exists and is Hölder continuous
of exponent β for E ∈ supp(ρ). The last formula also follows from the above. 2

Corollary 2 Let ρ : R → C be k-times differentiable with k-th derivative Hölder continuous of
exponent α ∈ (0, 1] with compact support. Then, for any β such that 0 < β < α, its Borel transform
Gρ(z) defined by (49) has a k-times differentiable boundary value on supp(ρ) for which the kth
derivative is Hölder continuous with exponent β.

Proof: Equations (51) and (52) show that ∂EIρ(e, ε) = Iρ′(E, ε) and similarly for Rρ. Using
Lemma 10 gives the result. 2

Lemma 11 Let ρ be a real valued C1-function on the real line with compact support such that
ρ(0) 6= 0. Let G+

ρ denote the partial Borel transform defined by

G+
ρ (z) =

∫ ∞
0

ρ(e) de

z − e
.

Then one has the following.

(i) G+
ρ is holomorphic outside of [0,∞) ∩ supp(ρ).

(ii) The boundary value Iρ(E) = =mG+
ρ (E ∓ ı0) of its imaginary part is ±πρ(E) whenever E > 0,

it is ±π
2
ρ(0) at E = 0 and it vanishes for E < 0.

(iii) The boundary values Rρ(E) = <eG+
ρ (E ± ı0) is continuously differentiable for E 6= 0 and

satisfies

Rρ(E) = ρ(0) ln(|E|) + O(1) , as E → 0 .
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Proof: The proof will use the results given in the proof of Lemma 10. The first claim (i) can be
proved in the same way indeed.

(ii) Thanks to equation (50) and with the change of variable e = E + εx, the result of equation
(51) is still valid as long as E > 0. This is because the interval of integration for the variable x is
[−E/ε,∞) in the present case. Then, as ε ↓ 0, the dominated convergence theorem gives the same
result since this interval of integration eventually becomes R. The same argument applied to E < 0
gives and interval of integration [|E|/ε,+∞) which shrink to the empty set as ε ↓ 0. At last, if E = 0
the interval of integration is [0,∞), and the result is π

2
instead of π.

(iii) The argument given in the proof of Lemma 10 applies also for E 6= 0, so that Rρ is contin-
uously differentiable as well. Near E = 0, however, the integral defining Rρ diverges. This can be
seen as follows, using equation (51) (note the change of sign)

Rρ(E, ε) =

∫ ∞
0

de
ρ(e)(E − e)

(E − e)2 + ε2
= − 1

2

∫ ∞
0

ρ(e) d
(
ln((E − e)2 + ε2)

)
.

Since ρ has compact support, integrating by parts yields

Rρ(E, ε) =
ρ(0)

2
ln(E2 + ε2) − 1

2

∫ ∞
0

de ρ′(e) ln
(
(E − e)2 + ε2

)
.

Note that the second integral converges as ε ↓ 0 to

−
∫ ∞

0

de ρ′(e) ln(|E − e|) .

which is continuous with respect to E near E = 0. This can be seen by changing e into e − E and
using the fact that the derivative ρ′ is continuous as well as the dominated convergence theorem. 2

B Technicalities on certain operator inverses

Lemma 12 Let A = A∗ and B ≥ 0 be bounded operators on a Hilbert space. Then Ker(A + ıB) =
Ker(A) ∩ Ker(B) = Ker(A − ıB). In addition, the restriction of the operator K = (A + ıB)−1B to
(Ker(A) ∩Ker(B))⊥ is well-defined. In particular, if v ∈ (Ker(A)∩Ker(B))⊥, then w = (A+ ıB)−1v
exists as the unique solution w ∈ (Ker(A) ∩Ker(B))⊥ of (A+ ıB)w = v.

Proof: If w ∈ Ker(A) ∩Ker(B), then clearly (A+ ıB)w = 0 so that w ∈ Ker(A+ ıB). Conversely,
if w ∈ Ker(A + ıB), then 0 = 〈w|(A + ıB)w〉 = 〈w|Aw〉 + ı〈w|Bw〉. Since A and B are selfadjoint,
it follows that 〈w|Aw〉 = 〈w|Bw〉 = 0. Since B is positive, ‖Bw‖2 = 〈w|B2w〉 ≤ ‖B‖〈w|Bw〉 = 0.
Hence w ∈ Ker(B). This also implies Aw = 0 so that w ∈ Ker(A) ∩ Ker(B). The same argument
shows that Ker(A−ıB) = Ker(A)∩Ker(B). Let P be the orthogonal projection onto Ker(A)∩Ker(B).
Then it commutes with both A and B. Therefore, both (A + ıB) and B restrict to Ran(1 − P ).
Moreover, Ran(A + ıB) = Ker(A − ıB)⊥ = Ran(1 − P ). Therefore the equation (A + ıB)w = v
admits a solution, which is unique modulo Ker(A + ıB) which is unique if, in addition, Pw = 0,
namely if w ∈ (Ker(A) ∩Ker(B))⊥. 2
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Lemma 13 For an interval I ⊂ R, let b ∈ I 7→ Ab ∈ Mat(N × N,C) and b ∈ I 7→ Bb ∈ Mat(N ×
N,C) be real analytic functions satisfying Ab = A∗b and Bb ≥ 0. Let Pb denote the projection
on Ran(Bb). Then dim(Pb) is constant except for b in a discrete set V ⊂ I. We suppose that
Ker(Ab) ∩ Ker(Bb) is non-trivial only for a discrete set of b’s not lying in V and that those zeros
are regular singular points for Ab, that is, these zeros of b ∈ I 7→ Ab are of first order. Then
b ∈ I 7→ Kb = (Ab + ıBb)

−1(Bb)
1
2 is well-defined, continuous and real analytic except in those points

of V which are not zeros of Ab.

Proof: First of all, by analytic perturbation theory the eigenvalues of Bb vary analytically with b
and therefore dim(Pb) indeed only differs from the almost sure value L on a discrete set V. On V,
the dimension of Pb is then smaller. By the proof of Lemma 12, if Ker(Ab) ∩ Ker(Bb) is trivial,
the inverse of Ab + ıBb exists and, moreover, it is real analytic in b. Thus we may restrict our
attention to one point, say b = 0, at which Ker(A0) ∩ Ker(B0) is non-vanishing. Then Kb is real
analytic in b ∈ I\{0}. By Riemann’s theorem on removable singularities it is sufficient to show
that Kb remains bounded in a neighborhood of b = 0, because then it is already analytic at b = 0.
Now dim(Ker(Bb)) = N − L is constant for b 6= 0 (possibly after having made I smaller). Again
by analytic perturbation theory there exists a real analytic function b ∈ I 7→ Ub of unitaries such
that UbBbU

∗
b =

(
0 0
0 ηb

)
where ηb > 0 is a diagonal matrix of size L. It is clearly sufficient to show

that b ∈ I 7→ UbKbU
∗
b = (UbAbU

∗
b + ıUbBbU

∗
b )−1Ub(Bb)

1
2U∗b is real analytic, which is equivalent to

supposing that Bb is diagonal. Next let us introduce the notations

UbAbU
∗
b =

(
αb βb
β∗b γb

)
,

where αb and γb are self-adjoint square matrices of size (N − L)× (N − L) and L× L respectively.
Because Ker(A0) ∩ Ker(B0) is non-trivial, it follows that Ker(α0) ∩ Ker(β∗0) is non-trivial as well.
Moreover, β∗b is of size L× (N − L) and

(
0 0
β∗b 0

)
= UbPbAb(1− Pb)U∗b . Furthermore

UbKbU
∗
b =

(
αb βb
β∗b γb + ıηb

)−1(
0 0

0 (ηb)
1
2

)
,

where the appearing inverse only exists in the sense of Lemma 12. In order to calculate the inverse,
let us introduce the Schur complement by

σb = αb − βb(γb + ıηb)
−1β∗b

= αb − βb(γbη−1
b γb + ηb)

−1γbη
−1
b β∗b + ı βb(γbη

−1
b γb + ηb)

−1β∗b (53)

which is an (N −L)× (N −L) matrix. The second formula shows also that =m(σb) is non-negative.
For b 6= 0, one has Ker(αb) ∩Ker(β∗b ) = {0} so that σb is invertible because then the imaginary part
is positive. Now the Schur complement formula gives(

αb βb
β∗b γb + ıηb

)−1

=

(
σ−1
b −σ−1

b βb(γb + ıηb)
−1

−(γb + ıηb)
−1β∗bσ

−1
b (γb + ıηb)

−1 + (γb + ıηb)
−1β∗bσ

−1
b βb(γb + ıηb)

−1

)
,
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so that

UbKbU
∗
b =

(
0 −σ−1

b βb(γb + ıηb)
−1(ηb)

1
2

0 (γb + ıηb)
−1(ηb)

1
2 + (γb + ıηb)

−1β∗bσ
−1
b βb(γb + ıηb)

−1(ηb)
1
2

)
.

This shows that UbKbU
∗
b remains bounded in a neighborhood of b = 0 if σ−1

b βb remains bounded, or

equivalently that Fb = σ−1
b βb(γbη

−1
b γb + ηb)

− 1
2 remains bounded. Setting

Cb = αb − βb(γbη−1
b γb + ηb)

−1γbη
−1
b β∗b , Db = βb(γbη

−1
b γb + ηb)

− 1
2 ,

this can be written as
Fb = (Cb + ıDbD

∗
b )
−1Db ,

due to the formula (53). Now the zero of Ab at b = 0 is of first order by assumption, therefore the
zeros of αb and β∗b are of first order as well. It follows that the zero of Cb is of first order as well.
Hence the following lemma is applicable to deduce that Fb is bouned. 2

Lemma 14 For an interval I ⊂ R, let b ∈ I 7→ Cb ∈ Mat(N × N,C) and b ∈ I 7→ Db ∈ Mat(N ×
L,C) be real analytic functions satisfying Cb = C∗b . We suppose that both are invertible except on a
discrete set of points and that, in case Ker(Cb) ∩Ker(D∗b ) is non-trivial for some such b, the zero of
Cb is of first order. Then b ∈ I 7→ Fb = (Cb + ıDbD

∗
b )
−1Db is well-defined and real analytic as well.

Proof: Again we focus on one point b = 0 for which Ker(C0) ∩ Ker(D∗0) is one-dimensional. Then,
also as above, we choose a basis such that Cb is diagonal. In this basis, let us introduce the following
notations for the matrix entries:

Cb =

(
bκb 0
0 δb

)
, D∗b =

(
bηb βb
bγb αb

)
.

Here κb and δb are diagonal invertible matrices (for all b) and the size of κb is the multiplicity of the
zero of C0. Then

DbD
∗
b =

(
b2(η∗bηb + γ∗bγb) b(βb + γ∗bαb)
b(β∗b + α∗bγb) β∗bβb + α∗bαb

)
.

Thus we introduce the Schur complement for (Cb + ıDbD
∗
b )
−1:

σb = bκb + ı b2(η∗bηb + γ∗bγb)− b2 (η∗bβb + γ∗bαb)
(
δb + ı (β∗bβb + α∗bαb)

)−1
(β∗b ηb + α∗bγb) .

Note that the appearing is well-defined also at b = 0 because δ0 is invertible and the other contribution
is imaginary. We also note that σb = bκb +O(b2). Now we obtain

(Db + ıDbD
∗
b )
−1Db =

(
bκb + ı b2(η∗bηb + γ∗bγb) ı b(η∗bβb + γ∗bαb)

ı b(β∗b ηb + α∗bγb) δb + ı β∗bβb + α∗bαb

)−1 (
bηb bγ∗b
β∗b α∗b

)
.

The upper left corner of the inverse is (σb)
−1 = O(b−1) and thus singular, but all the other entries

remain bounded for b → 0 because (σb)
−1 is always multiplied by a factor b. The singularity of the

upper left corner, however, is multiplied by b from the second factor. In conclusion, (Cb+ıDbD
∗
b )
−1Db

remains bounded and therefore the singularity is removable. 2
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