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Résumé. 2014 En adoptant le point de vue de Heisenberg, on introduit une nouvelle méthode de
quantification semi-classique, pour les électrons de Bloch sous champ magnétique. La structure
du réseau est utilisée pour définir une structure algébrique. L’algèbre, dite de rotation, ainsi
définie est non commutative, mais permet d’avoir un développement systématique à flux nul ainsi
qu’à flux rationnel quelconque. L’ensemble des résultats connus sont retrouvés dans le cadre de
notre formalisme, sans faire appel à la notion de fonction d’onde telle que dans la méthode WKB
ou celle de l’équation du mouvement par exemple. Des nouveaux résultats, jusqu’au second ordre
en flux sont donnés ainsi que des exemples simples pour illustrer la méthode algébrique.

Abstract. 2014 Starting from Heisenberg’s point of view, a semi-classical quantization method is
introduced for 2D Bloch electrons in a magnetic field. The underlying lattice structure is used to
define an algebraic structure. The (rotation) algebra so defined is non commutative, but allows
for a systematic expansion of the magnetic energy levels, free energy, etc. near zero as well as an
arbitrary rational flux. All previously derived results are recovered as special cases, but without
involving wave function considerations (WKB, equation-of-motion methods, etc.). New results,
up to second order in the magnetic flux, are explicitly derived and simple examples are used to
illustrate our general algebraic formalism.
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1. Introduction.

In recent years, many physical problems have been shown to be related to various aspects of
the Landau level spectrum of Bloch electrons. Indeed, the motion of an electron in a crystal
lattice in an external magnetic field is one of the classical problems in solid-state physics.
Recently, there has been a renewal of interest on this subject and this for at least two reasons.
First, because of its importance in various 2D physical interesting problems : Quantized Hall
effect [1], quasi-ID conductor, anyon superconductivity [2], flux state model for high
temperature superconductivity [3], superconducting networks [4], magnetoresistance of
submicronic metallic networks [5], etc. The other reason stems from the recent advances in
mathematics and mathematical physics : Schrôdinger operators with almost periodic poten-
tials [6], C* algebras of almost periodic operators [7], non commutative cohomology [8], etc.
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In most cases, one can reduce the 2D problems into 1 D quantum mechanics e.a. almost
Mathieu equations [9] or Harper equation.
More recently, the computation of the spectrum boundaries motivated some progress for

this class of problems. Using semi-classical ideas, some new results have been derived [10-12].
In particular, the shape of the spectrum edge at arbitrary rational flux has been studied and
the so-called Wilkinson-Rammal formula (see below) was derived. This extension of the semi-
classical ideas [ 13] to finite flux is not so immediate [14]. On the other hand, the used methods
were mainly non-trivial adaptations of WKB theory. Here, the notion of wave function is an
essential one, and the main difficulty comes from the connection formula between different
sectors (see Ref. [10] for instance). Furthermore, it is usually very difficult to go beyond the
first order expansion. This serious limitation of the potential use of WKB methods motivated
a purely algebraic approach, which has been developed by one of us [15]. This new
formulation for 2D Bloch electrons in a magnetic field provides actually a powerful and
elegant method. Unfortunately, the algebraic method calls for an elaborate machinary of non
commutative geometry, which is not widely known in the physics community.
The purpose of this paper is to outline first and then use the algebraic approach in order to

dérive new results. To our knowledge, this is the first extensive use of this methodology. In
this respect, other applications of this formalism are expected in the future. Accordingly, this
paper is organized as follows. In section 2, we summarize the basic features of the method,
with reference to mathematical literature when rigorous derivations of some results will be
found. Section 3 is devoted to the implementation of this method in the case of zero flux
(weak field expansion). In section 4, we generalize to the case of a national flux, where a new
computational trick is used in order to push the expansion up to second order. The results as
well as the procedure we used are best illustrated in terms of examples. For this reason, we
give explicit examples through the length of this paper. Our conclusion section is the object of
some remarks relative to the extension of this work to treat other new problems. For the sake
of clarity, we limited our exposition to the quantization of magnetic energy levels. The
calculations of the magnetic susceptibility, which includes both the de Haas-van Alphen effect
and the steady susceptibility, are left out. However, a direct use of the results derived below,
to the problem of the Fermi sea stabilization by the gaps, will be found in the next paper [16].

2. Algebraic Formalism [15].

In this section we introduce the algebraic formalism and the notation used in the next
sections. Readers, which are familiar with this formalism, will ignore this section which is a
sort of summary of previous works.

2.1 INTRODUCTORY EXAMPLE. - Let us consider the case of a tight-binding model on a
simple square lattice. In absence of magnetic field, the Hamiltonian may be described by
means of nearest-neighbours interactions :

where f/1 (m, n ) is the wave function at node (m, n ). Adding a uniform magnetic field will
result in changing the phase of each term in equation (2.1 ) :

where y,(m, n ) denotes the line integral of the vector potential between the site

(m, n ) of the lattice and the point (m + 1, n ) for 1£ = 1 or (m, n + 1 ) if J.L = 2. ln particular,
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because the magnetic field is uniform, one must have :

were 00 = hc /e is the quantum of flux and  the flux through the unit cell. With Landau
gauge (particular solution of Eq. (2.3)) :

the Hamiltonian H commutes with space translations along the n-direction and the solutions
of Schrôdinger equation Hf/J = Egl will have the form :

This leads to the well known Harper’s equation :

A fundamental remark in the algebraic formalism is that equation (2.2) ,can be written in an
algebraic way, by introducing the following two unitaries U and V :

They satisfy the following commutation relation :

1 Il

The Almost-Mathieu Hamiltonian H can then be written simply as :

This example illustrates a general property. In general, it is possible to show that the
Hamiltonian for 2D Bloch electrons (see below) in a uniform magnetic field belongs to the
C*-Algebra generated by U and V.

2.2 ROTATION ALGEBRA .ae(a) : BRIEF ACCOUNT. - The operators U and V of the previous
example generate a C*-Algebra A(a) called the rotation algebra (1). Introduced for purely
mathematical reasons, A(a) constitutes a remarkable object because it is non-commutative
whenever a is irrational. In recent years, A(a) and its generalization have been used to get
general properties of the energy spectrum : gap labelling, integrated density of states, current
correlations, etc. More recently, the definition of a differential structure (see below)
permitted to provide a mathematical framework to prove the quantum Hall effect and for a
detailed study of Harper’s equation.

In what follows, we will give a brief exposition of the rotation algebra A(a), detailed
definitions are the object of the next subsection.
Consider the situation of a 2D Bloch electron in a magnetic field :

(1) The reason for using the terminology « rotation algebra » can be seen as follows. There is one
representation where the action of V is a simple multiplication by exp (2 i 7T a ) and this is nothing else
than the rotation with angle a. For more details, see M. R. Rieffel, « irrational rotation C*-Algebra » ;
Short Communication to the congress of Mathematicians (1978).
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where Q = (Q 1, Q 2) is the position operator, P = (P 1, P 2) is the momentum operator,
A = (A 1, A 2) the magnetic vector potential and V is a periodic potential. The kinetic part of
H is no longer translation invariant because the vector potential breaks the translation
symmetry. However, adding a phase factor to the translation operator, we get the following
« magnetic translations » :

where Q x a - Q 1 a2 - Q 2 al if Q = (6b Q 2 ) and a = (a,, a2 ). Now, if a is a period of V, H
commutes with U(a ). The algebra generated by the magnetic translations U(a), is the natural
extension of the example described in the introduction, which is nothing else than a lattice
version of this algebra.

, Very important notions such as the trace (per unit volume) and the differential structure
have been introduced. Roughly, the trace T per unit volume and the differential structure are
entirely defined by the following conditions :

It turns out that these notions are very useful in practice. Let us mention the integrated
density of states (IDS) : JW (E) equal the number (per unit volume) of eigenvalues below E :

where P represents the eigenprojection of the Hamiltonian H on energies smaller than E.
Another example is provided by the Chern character Ch(P ) of a given projection P in the

algebra :

In particular, the Hall conductivity at zero temperature is given by

Here, PF is the eigenprojector on energies smaller than or equal to the Fermi energy
EF. The conditions of validity of equation (2.16) are discussed in reference [7].
A direct application of equations (2.14) and (2.15) is the proof of the Streda [1] formula :

where B is the magnetic field. Equation (2.17) relates the Hall conductivity o-H to the

integrated density of states within the gaps.

2.3 PRECISE DEFINITIONS AND COMPUTATIONAL TOOLS. - a) Why the rotation algebra ?
The basic remark behind the introduction of the algebra A (a) is already clear in the absence
of the potential V. Indeed the conventional way in describing the one electron Hamiltonian
for a Bloch electron in a magnetic field is to make the substitution P - K = P -

eA, where P is the momentum operator and A satisfies :
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Fort = 0 in equation (2.10), the spectrum of H is immediately calculated. It comes from the
remark that K obey to the canonical commutation relations, namely :

Therefore H becomes the energy operator for a harmonic oscillator. The spectrum is then
given by : En = (2 n + 1 ) Eo, n = 0, 1, 2, ... This feature of the problem remains true when
V e 0 and this for strong as well as weak field respectively.
In strong field limit, it is useful to introduce a new set of canonical variables, besides K. We

first choose a symmetric gauge :

If we set

and

The expansion of V in Fourier series, shows that [ 17] the band effective Hamiltonian belongs
to the C * Algebra generated by the unitary operators :

where b l, b2 are the generators of the reciprocal lattice F*. They satisfy: UV=
e2 !?r/ a VU, where a = 0 po’ Here  is the flux through the unit cell of the Bravais lattice F.
In general U and F appear in the combination

In the weak field limit, we have a dual situation, where the effective Hamiltonian belongs to
the C * Algebra generated by exp (i  a 1 K&#x3E; )’s, namely by two unitaries U and V defined by

Here a, and a2 are the generators of the Bravais lattice r. Furthermore, U and appear
always in the combinations :

So, every operator of interest for us can actually be expanded in terms of trigonometric
polynomials in two unitaries U and V such that UV = e2i7Ta VU.

b) Topology of A(a). - Of main interest for us, are the following properties of

A(a):

i) A( a) = A (a + 1): gauge invariance.
ii) If Wl and W2 are two q x q unitary matrix such that W W2 = e2i7Tp/Q W2 W,

lkf = W1 = 1, then A (p / q) is isomorphic to the set of matrix valued functions F(k) over
R2 such that :
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iii) A trace T per unit volum on A(a) is entirely defined by :

Furthermore, if P is a projection of ae ( a), there is a unique integer n such that

T(P) = {na} where {x} denotes the fractional part of x [18]. 

c) Differential structure. - The rotation algebra A(a) can actually be viewed as a non-
commutative 2D torus by identifying U and with the coordinate functions. This allows to
define two derivatives as follows :

These derivatives commute. Furthermore, we see that U and become analogous to the
coordinate functions e2 i’Trxp. (JL = 1, 2 ) of a 2D-torus, if the trace T is replaced by normalized
Haar measure and if the a. 1 s represent the usual partial derivatives.
Let now P be a projection of A (a). The Chem class of P is defined by analogy with the 2-

torus as :

The main result concerning the Chem class is the following : if P is a projection of
A(a), its Chem class is an integer.

d) Ito-like derivative. - By considering the set ae = {ae( a), a E IR }, one can define the
derivation with respect to a. More precisely, let A be a polynomial :

The operator a is defined by

This operation satisfies the following rules :

ii) if A - 1 exists, then :

In particular, one can show (Streda’s formula) :

for a projection P.

2.4 SIMPLE EXAMPLES. - The following examples illustrate the notions introduced in the
preceding section.
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a) Rectangular lattice. - Introducting an anisotropy between the horizontal and vertical axis,
does not change the form of the Hamiltonian :

Here IL measures the anisotropy ratio of the coupling constants in the vertical versus the
horizontal directions. The corresponding 1 D equation (analogous of Eq. (2.6)) also represents
the effective Hamiltonian for a tight-binding representation of the effect of a charge density
wave in a 1 D conductor provided g represents the strength of the Peierls instability.
The energy operator H is the quantized version of K(k, a ) obtained by replacing U by

e ik, Vby e ik2 @ W(M 1, m 2 ) correspond in general to e (im, k2 - m2kt&#x3E;. The classical Hamiltonian is
then given by

b) Generalized square lattice. In this case (Fig. 1 b), H can be written as

where IL is the ratio of the hopping matrix elements between n. n. n and n. n sites :

Il = t2ltl. Using the notations of (Fig. lb) one gets :

and this leads to :

and

The classical version of H exhibits an explicit dependence on a :

c) Triangular lattice. In this case, one obtains :

and, using

The classical counterpart of H is given by

d) Two flux triangular lattice. - Assuming a flux 17 for up triangles and cp - 17 for down
triangles, one obtains :

Using the above notations :
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Fig. 1. - Notations used in the text for the magnetic translation operators. (a) simple square lattice, (b)
generalized square lattice, (c) triangular lattice, (d) two flux triangular lattice.

The classical version of H is then

Let us mention that the spectrum of this model has been investigated by one of us, where new

qualitative features have been obtained [19].

3. Semi-Classical Expansion at Weak Magnetic Field.

In this section, we outline first the quantization procedure at weak magnetic field. Previously
obtained results are then recalled and new results are derived.

3.1 QUANTIZATION AND FIRST ORDER EXPANSION. In reference [7], the following result
has been obtained. Let JC (k ; a ) be a continuous function of the real variables k = (k l, k 2 )
and a. Assume that 3C (k, a ) is periodic with respect to k, of period 2 7T in each component of
k. Let Je=¿h(m;a) e t l‘x‘" be the Fourier expansion off (with k x m = k 1 m 2 -

m

k2 ml) and assume that for each a of interest, JC (k ; a ) has a unique regular minimum in each
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cell of period. Without loss of generality one can assume that this minimum is located at
k = 0 for a = 0 and £(0 ; 0 ) = 0. Correspondingly, we define the quantized of K as the
following element of the algebra A(a):

The ground state energy E ( a ) is defined as the infinum of the spectrum of H( a ) in
A (a). In the limit a - 0, the asymptotic behavior of E( a ) (semi-classical expansion) is given
by the following :

More generally, the « Landau » levels are given by (n = 0, 1, 2, ... ) :

The accuracy of this « harmonic oscillator » result is discussed in reference [7]. One notices
the occurrence of the last new term which is due to the explicit dependence of 3c on a. In
some sense, equation (3.3) oins the most general result, to first order in a.

3.2 AN ILLUSTRATIVE EXAMPLE. - In order to introduce the general formalism, let us
consider the case of Harper’s equation :

with UV = e 2 i,,, VU. H is the quantized of X (k) obtained as described before (us

The minimum of 36 (k) is reached at k, = k2 = 71’. Near this critical point kc = (TT, ir ) the
quantized of 36 results from the substitution: k ---&#x3E; 1(c + y 1/2 K, where k = (kl, k2) and

KJL are the components of the momentum operator (JL = 1, 2). KI and K2 are normalized
such as :

Therefore, H becomes :

For vanishing y, one can expand (Eq. (3.7)) in powers of y. To order y 2, one obtains :
H = - 4 + yh, with 

.

Therefore, to first order in y, one recovers the Landau levels structure
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which is best described in terms of harmonic oscillator operators :

a*
and the eigenstates 1 n) = /2 10 &#x3E; . In this respect, it is useful to recall the following rules :

("!)’
aln) =nl/2In-l),a*ln) = (n+l)I/2In+l) and a * a [ n ) = n [ n ) . Considering the sec-
ond part of equation (3.9) as a perturbation to the harmonie oscillator, one deduces the
eigenvalues en of h as

The matrix elements in equation (3.10) are simply obtained (see Appendix A) as :

and this leads to :

Next order terms in equation (3.11) can be calculated (see § 3.3) in a systematic way. Notice
for the moment the absence of terms O( y 1/2), O( y 3/2), etc.

3.3 GENERAL CASE. - The result obtained above, can be generalized such as to include
(Eq. (3.11 )) as a limiting case. In fact, assuming the following normal form of the classical
version J (k ) of H :

then the following formula for En holds :

with

This formula holds for an arbitrary 2D lattice, even in the case where 3c (k) exhibits an explicit
dependence on the flux (see examples below).
The proof of equation (3.13) starts from the following expression of JC(k) :

we assume that K (0) is real and corresponds to a minima of 3C (k), where the second order
derivative matrix (a JL av Je (O))JLV is positive definite. More precisely, without loss of

generality, we assume up to a canonical change of coordinates: aJL avJe(O) = lù8JLv,
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oi ::-.» 0. The quantized version of JC(k) is obtained by putting : k, --+ /-y- K,,, where

KI and K2 are two self-adjoint operators with [KI, K2] = i. The expansion of H reads :

The critical point is located at kc = 0, and a,JC(O) = 0. To order y 2 one then obtains :

where V = O( y 1/2). -

At the lowest order in y, the dominant part is Ho = dJL dvJe(O). KJL Kv which is trivially
diagonalized. Indeed, making an appropriate change of variable on k, one can always be
reduced to the case Ho = w (K( + K)), with lù = det (dJL dvJe(O))11/2x sign ( a2 ) . Here
sign d2Je :&#x3E; 0. At this order, one gets :

To first order in the perturbation, one has :

and the next order is given by :

From equation (3.16), V assumes the following form :

Therefore, in the calculation of E2) one can neglect y Vi 1 and consider only ’Y3 l/k 
V112-12 3

a) Calculation of E n (’) - For symmetry reasons, (nIKJLKJL2KJL3In) =0 and then only

y VI 1 contributes to E(l):12 n

Giving the symmetry of the tensor it is convenient

to use
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where a belongs to the symmetric group S4. Therefore,

where, we have introduced the symmetric polynomials :

Using the commutation relation [KI, K2 = i, one can calculate :

This yields to :

and then

b) Calculation of En(2). - ’’rhe compùtatïon of En(2) requires the calculation of the matrix
elements of VI/2 given by :, Vvi’:;:: ’ÔI.ÔÍ.t2 a,33C (0) - K, K2 K,,3. The only non vanishing
elements are (n 1 VI/21 n ± 1) arid (n 1 VI/21 n - 3 ). Proceeding as before, one obtains :

Now from the expression of E n (2) :
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where only n’ - n ± 1 and n ± 3 contribute, one deduces :

The desired result is a direct consequence of equations (3.23) and (3.24) :

c) Remarks. - Regarding the obtained result, three remarks are of order.

i) For a large class of 2D lattices, the symmetry property : 3c (- k) = Je (k) holds. In this
case, En 2 = 0.

ii) Equation (3.19) remains true, even if the classical version of the Hamiltonian has an
explicit dependence on y.

iii) In the expansion of En, one remarks the absence of terms in o( y 1/2), o( Y 3/2), etc. This
general property follows from the fact that H can always be written as : H = Je(O, 0) +
y. h with h = ho + y 1/2 W1/2 + y Wi + 0( y 3/2). Here, ho is the harmonic oscillator part which
gives the first order term 0( y ). To order y 2, the property (n 1 Wl /21 n &#x3E; = 0 eliminates the
diagonal contribution of W1/2, and this because WI/2 is odd in the K’s. The only remaining
contribution is the non-diagonal term 1 (n 1 WI/2 ln’&#x3E; 2 as shown before.

3.4 HIGH ORDER EXPANSION. - We outline here the systematic expansion of En in the case
of Harper’s problem. With obvious notations, we have :

where :

The eigenvalues are given by :

The required matrix elements are :

and

Explicit calculations of Jl and J2 are outlined in Appendix A. In particular,

and
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This leads to the following result :

3.5 Two EXAMPLES. - a) Simple square lattice. - With appropriate notations, one has
je(k) == - 2 cos k} - 2 cos k2. The critical point is k, = (0, 0) and then : K (0 ) = - 4,
a2je (0) = 2 . 1, cv = 2 and â2Je(O) = - 4. In this case (Eq. (3.13)) reduces to equation (3.11)
as it should be.

b) Two flux triangular lattice. - Using equation (2.41), 3C(k) exhibits an explicit dependence
on the flux :

We consider first the critical points at y = 0. One has :
- Saddle points : kl = k2 = 7r + ?y ; ki = - q , k2 = ’TT’ + 17 and ki = w + q , k = - q .
- Minima or maxima : occurring at points P of coordinates kl = k2 = 2 ir 19 + 71 p 0-13 3

with e = - 1, 0 or 1. At this point, JC (P) = 6 cos B and a2je (p) 2 cos 0 2 1 Thus,(1 2

P corresponds to a maximum (resp. minimum) if cos 0, &#x3E;» 0 (resp. cos 0 0) and to a
singular point if cos (J E = 0.
An appropriate change of coordinates, kl, 2 = 2013= (3- 1/4 kl -t 3- 1/4 k2), reduces J (k) near

v2
P to :

where

In this new frame (kl, k2), the matrix of second derivatives becomes a scalar one. The

quantization of Je can then performed as usual : k. --&#x3E; y1/2 K., with [K,, K2] = i.
For weak y, H reduces to :

- i

The expansion of the eingenvalues in, powers of y is immediate. Only the term

0( y 3/2 ) has to be treated as a second order perturbation of the remaining diagonal terms. The
result is :
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This expression of En is identical to that predicted by equation (3.13). Indeed, in the present

example (lack of inversion center symmetry). Furthermore, the above formula does not work
at the singular point cos 0 = 0 because = 0 and H assumes a singular form : H =

"Il

4. Semi-Classical Expansion at Rational Magnetic Flux.

During several years, the possible extension of semi-classical ideas to rational flux remained
without solution [14]. The first successful attempts [10, 11] ] are very recent and limited to
specific examples. To our knowledge the first general formulation of this problem has been
given by one of us [7] (see also Ref. [12]), within the algebraic formalism depicted in
section 2. In this section, we outline a systematic semi-classical expansion near rational flux.
This line of approach is original, and leads to new results not derived before.

4.1 QUANTIZATION METHOD. - The method of quantization is based on a weak version of
the renormalization group methodology. The idea is that whenever a is close to a rational
number p/q, the rotation algebra A(a) can be identified with the subalgebra of

, 

where W1 and W2 are two q x q unitary matrix such that W1 W2 = e2 ipl qW2 W, and

Using this representation, one can write the Hamiltonian as a matrix with entries in

.1t; ( a - p . For a = p /q, the entries become functions of the variable k. Therefore, theq

spectrum can be computed simply by diagonalizing the corresponding matrix for each k,
giving rise to band spectrum. For a very close to p/q, the gaps and bands structure is
maintained. This allows in particular the possibility of defining bands. For the sake of clarity,
we consider a non degenerate band B. This means that if P denotes the eigenprojection of the
band at the value a = p /q, then trP (k) = 1 for all k’s. In what follows, we show how to use
this formulation.

Let trq represents the partial trace induced by the usual trace on the algebra
Mq on Mq 0 A (a - p lq). Under these conditions, one can show that, up to a correction of
order 0«a -plq )2)@ the lower E( a ) (resp. the upper) edge of the band B, is identical to
E’ ( a ) which is the lower (resp. the upper) edge of the spectrum of the element

trq (HB) of .4 (a - p lq). As a consequence, the so-called Wilkinson-Rammal formula
results : The lower (resp. the upper) edge of the band E- ( a ) (resp. El (a» of a non
degenerate band of H at a = p /q is given by :

with
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and

This by now well known formula contains three contributions. The first term is the value of
the energy at the band edge for a = p /q. The second represents a standard harmonic
oscillator part. The occurrence of the density of states p (EB(O)) is due to the following
observation. The element tr, (HB) of A (a - p lq) coincides at a = p /q with the band energy
function EB (k ). If we now apply (Eq. (3.2)) to trq(HB) we need first to compute the matrix of
second derivatives of EB (k) at the bottom (resp. the top) of the band. However, the

determinant det 1/2 am a vEB (0 ) is nothing but q 2 time the inverse of the local density of2
states p (EB (0» at the corresponding band edge. The last term in equation (4.2) comes from
Berry’s phase [10, 20], namely from the fact that the eigenprojection P (k) at the value
a = p /q defines in general a non trivial line bundle over the 2-torus (kl, k2). Notice that this
new term is not the Chem class of the bundle for the Chem class is obtained firstly in dividing
the trace by q, replacing H by P in equation (4.4) and then integrating over the 2-torus
(Brillouin zone). Here, we do not integrate, but we rather evaluate the integrand at the band
edge.
The above formula corresponds to the first order semi-classical expansion, and has been

established for an element H such that aH = 0. If aH:o 0, there is an additional contribution

to the second term which is easy to compute (analogous to a aH in Eq. (3.2)). A new
ana

derivation of the formula (Eq. (4.2)) will be given below, within a systematic expansion in
y = 2 ir (a - p lq). For practical purposes a possible choice for the two q x q matrices
Wl and W2 is the following one : W. is a diagonal matrix, with elements (W,)I,l =

exp 2 iff l:s;;, f :s;;, q; W2)1; e , 1 = 1, 1 -- q - 1 and ( W2)q, 1 = 1. This choice
q

satisfies trivially the required conditions : 91 = 91 1 and W1 W2 = e - 2 iirpl q W2 Wi .

4.2 SIMPLE EXAMPLE. - Before considering the general case, let us work out a warming up
example : Harper equation at p /q = 1/2. In this case :

where a,,, U2 and U3 are Pauli matrices

Following the method described above, the original Hamiltonian
transformed first into :

The quantized of H is obtained as usual. For a critical point located at k = 0, one replaces
k, by y 1/2 K. and this implies :

Before quantization, the band structure is given by two subbands : e = ±

2(cos2 k, + COS2 k2)1/2 which degenerate at E = 0. in what follows, we consider the semi-
classical expansion near s = ± 2 J2 and e = 0 respectively.
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This energy is reached at the critical point k, = k2 = 0. Instead of

expanding H as given by equation (4.7), in powers of y, it is more convenient to consider

H2 :

Expanding equation (4.8), up to order y 2, one obtains :

Using : one deduces :

which describes the Landau levels near the band edge

quantization rule is :

To first order in y, one obtains : - H = 2 Y 1/2(Kl . » U 3 + K2. U i)’ This Hamiltonian can be
simply diagonalized, because of its equivalence with Dirac Hamiltonian :

and then

The eigenvalues are : 2 n and 2 (n + 1 ) and then En = ± (8 n’Y )1/2. To the next order in y, H is
expanded further as :

The perturbation calculation, performed on H2 leads to the final result

i.e.

4.3 GENERAL CASE. - The semi-classical expansion at arbitrary p /q is based on the so-called
Schur formula [21]. Let H = 7f* be a self-adjoint operator, acting on a Hilbert space
iS Q (2, and E be an eigenvalue of H. If P (resp. Q) is the eigenprojector on subspace W (resp.
(2), then each E not in the spectrum of QHQ, is also eigenvalue of the effective Hamiltonian :
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Heff describes the effective (or renormalized) Hamiltonian on is, where the eventual influence
of (2 has been taken into account.
Of main interest for us is the case where P = 1 b &#x3E; ( b 1 i.e. of rank equal to one. In such a

case Heff(E) reduces to a 1 x 1 matrix, i.e. to a scalar :

This is the fundamental equation to be used below. In this respect, we mention the following
useful remark : if Q = LI’" r)  ’" ri 1 and HI’" r) = Er 1’" r)’ then

r

We consider now a self adjoint q x q matrix Je (k), regular in k = (kj, k2). In the vicinity of
k = 0, we expand K(k) up to fourth order :

Assume now that for k = 0, JC(k) has the eigenvalues el (k), ..., e q (k ) with the corresponding
eigenvectors 1 1&#x3E;kl ..., 1 q) k. In the following, we will use the following notations :

Similarly, we define :
r- 1 ,1 

The purpose of the present section is the expansion of a generic eigenvalue el (k) in powers
of y. For this we assume that el (k) is non degenerate at k - 0, and :

This assumption means that k = 0 is a regular minima or maxima of el and the matrix of
second derivatives a. a ve is scalar. Unless very exceptional cases, one can always find local
coordinates such that equation (4.17) is fulfilled. The normal form of et (k) allows for a natural
quantization procedure (Weyl quantization): k. --&#x3E; y 1/2 K., where K. are two self-adjoint
operators, such that [Kl, K2] - i. The quantized of Je is a matrix valued operator :

a) First order 0(-y) calculation. - Our aim here is to get a quantized operator
Et = et + 0 ( y ) by diagonalizing the matrix H and then deduce an expansion in y of the
harmonic oscillator type
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For this we use Schur formula (Eq.

Remember that Et is a scalar operator, depending on K’s and Q = 1 - 1 f &#x3E; (f 1. Giving that
Je == Je (0) is a diagonal matrix in the basis Il),..., lq &#x3E; and K. commutes with the matrix
elements of 3C (k), it follows that

and then

Using Feynmann-Hellman theorem, one deduces :

and then

This zero order approximation for EQ, has to be used as initial value in the iteration scheme
prescribed by equation (4.20). This leads to : 

--

Following equation (4.15), this can also be written as :

i.e.

The tensor R (2) so defined can be decomposed as follows :

The symmetric part . , can actually be identified as : MI, 2 6 IL ", whereas the remaining2

antisymmetric part is given by : 0" = (Rg) - R2(2» . This new term o-is a Berry’s phase term,2 1

given explicitely as :



1822

Notice that an appropriate use of equation (Cl) (Appendix C) leads to a simple expression for
:

Further simplifications occur if aet = 0 is used for instance (see Eq. (4.38)). Therefore, the
final result at order 0 ( y ) is given by

which is nothing else than the Wilkinson-Rammal formula (Eq. (4.2)).

b) Next orders O(’}’3/2) andO(’}’2). - With equation (4.24) as entry, one can iterate equation
(4.14) and get the next order 0 ( y 3/2) term :

Here we have defined the tensor R (3) given explicitely in Appendix B. Using the results of
Appendix C, one can reduce the new term (third order Berry’s like phase) :

into a simpler form :

The next order 0 ( y 2) term can be calculated similarly. The final result reads :

where the new tensors are given in Appendix B. As before, further simplification can be
done :

The last two terms in equation (4.29) are fourth order Berry’s-like phases, and are given by :
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To summarize, the operator Ep reads at order y 2 :

c) Energy levels. - Equation (4.30) allows for an expansion of the Landau levels in powers of
y. One remarks first that Rfi) ) and jR make no contribution to En. The other terms
R (4) R(4) and R(4) contribute to the first order whereas the contribution of u (3) appears at the
second order perturbation.
To first order in y, we recovers the formula (4.2) :

The second order correction to equation (4.31) is the sum of two terms 5E(1) and
5E(2) given by :

In equation (4.32), we have used the notation :

These new results have to be compared with the zero flux limit. The main difference is

certainly the proliferation of Berry’s phases : u, cr e (3)@ À(4) , etc. This is a non trivial new

feature, that is difficult to get from the standard WKB or the equation-of-motion methods
[22]. Remember that all the results of this paper have been obtained without any reference to
wave functions or eigenmodes. In this respect, this is a definitive advantage of the algebraic
formalism in comparison with other methods. In principle, one can formally obtain an infinite
series expansion of En vs. y. Without performing such a calculation, such a series is certainly
more complicated than that obtained by Berry [23] for a simpler problem.

4.4 COMPUTATIONAL ASPECTS, EXAMPLES. - In this section we illustrate the previous
results on two examples. For the sake of clarity we limit our discussion to the first order
expansion. As working example we consider Harper equation :

with
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Unless accidental degeneracy, there is q subbands at each rational flux plq, given by the
dispersion relation [24] :

where P q ( e ) = eq + ... is a polynomial of degree q in e. The band edges are given by
Pq(e) _ ± 4 and correspond to the critical points (kl, k2) specified by : cos qkl =
cos qk2 = ± 1. Unless special mention, we will assume kl = k2 = 0. In the notations of the
previous section, the eigenvectors If&#x3E; assume the following form :

To first order in y, one has to calculate only two parameters : CI) and u. From the definition of
w and equation (4.35), one deduces immediately

where the derivative is taken at the subband edge of interest.
The computation of o- is not so immediate. We start from the expression (Eq. (4.23)) of o- :

Using the property a,e = 0, one can simplify a as :

with 3C given by equation (4.34). The calculation of the last matrix element is a simple matter
of eigenvectors computation. This can be performed for instance as follows. Define

(0 -- a, f3 -- q + 1) first d a as :

with the convention = 1,  q, q - 1 = 1. Here, we used the notations

The definite solution is obtained, through fixing e. (:0 0) by the normalization condition :
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This implies the following expression for u: u = JW /’D with

and

A slightly different formula can be derived for the critical points qkl = qk2 = ’W. Let us

illustrate these formulae at simple rationals p /q = 1 j2, 1/3 and 1/4. In the first case, close to
e = ± 2 h, one finds o- = 0 as it should be [10]. In the case 13q = 1/3, the upper edge of the
spectrum is located as e = 1 + à and we find a = - 1 + 2 3 in agreement with reference

[11]. Similarly at p /q = 1/4, we have e = 2 à and equation (4.40) gives cl = - B/2/4.
More complete results can be obtained at different band edges for fixed p/q. For instance

at p /q = 1/3, we find (P 3 ( e ) = e 3 - 6 e) the following Landau level structures :

We conclude this section with a non-trivial example, provided by the generalized square
lattice (see Sect. 2.4 for notations). At zero magnetic field, the band structure is given by :

where IL = t2ltl. We limit our discussion to : 0 : IL  1/2, a, = :± 1/2 being a « critical »
value of IL. Taking 11 = 1, the band edges are given by e = - 4 - 4 ». Near the lower edge,
the Landau levels are obtained from equation (3.13) as

A more interesting situation occurs at p /q = 1/2, where Je(k) assumes the form :

with a = 2 cos k 1, b = 2 cos k2 + 4 i » . sin k 1 sin k2. The dispersion equation e2 = a2 + bb *
leads to two subbands, with a central gap [- 4 IL, 4 IL ]. Near the lower edge of the first
subband (i.e. at e = - J8) which is reached at ki = k2 = 0, one obtains: (J) = J2 and
or = 0. Thus, the cusp remains symmetric as for » = 0 :
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The other edge of this lower subband (e = 4 IL) reached at k, = k2 = 7T /2 exhibits a more
interesting behavior : co = ( 1 - 4 1£ 2)/c.c and o- = 1/2 &#x3E; . Therefore,

This non trivial result must be compared with the singular behavior found at j

5. Concluding remarks.

In addition to the specific use [16] of the results derived in the present paper, the methodology
we have used calls for some comments. This is probably the most concrete example where
three ideas are simultaneously at work : Semiclassical calculation, renormalization group
ideas and non commutative geometry. In this respect, it is very interesting to find other
examples where these ideas can be applied. We believe that we have now a very powerful
machinary which should be used in the cases where physical intuition is lacking. We quote just
the case of Bloch electrons in a periodic magnetic field, where new results have been obtained
recently by our group [25]. For more detailed discussions on the non commutative geometry
and the semiclassical limit in quantum mechanics, we direct the reader to reference [26].

APPENDIX A

Useful matrix elements.

The low field expansion calls for the computation of some matrix elements of the simple
+ * *

harmonic oscillator. Using the standard notations : KI = a + a K2 = a - a - , * [a, a * ] = 1,
2 ·1 V 2

we just illustrate a rather general procedure for the calculation of the appropriate matrix
elements. For this we consider the case of (n 1 K; ri n), r = integer. It is useful to introduce

the generating function (q real) :

Using the commutation relation can be written as :

The expansion of each term in (A2) leads to :
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Here we have used can also be written as :

The comparison of (A4) and (A5) gives the desired result

For instance, one obtains :

and finally

APPENDIX B

Second order expansion at rational flux.

In this Appendix we give the explicit expressions of the third and fourth order tensors used in
the main text.
The third order tensor, which appear in equation (4.24) is given by :

Symmetry arguments can be used to show :

The other tensors appear in equation (4.27). The second is simply given by :



1828

whereas the first is more involved :

APPENDIX C

Projectors and derivatives.

We show in this Appendix the following useful result :

Using similar ideas, one can derive the Feynmann-Hellman theorem :

To prove’ (C 1 ), we take the derivative

, This leads to :

The first term in (C2) is a diagonal matrix, so for f * f’ :

But, PS(k) are projectors :

Taking the derivative a. leads to :

and for s = t@p2= P s gives :
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Using now the definition of

The desired result is a consequence of (C3) and (C5). More elaborated identities can actually
be derived, following the same line of arguments.
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