
Non Commutative Methods in Semiclassical 
Analysis 

J e a n  B e l l i s s a r d  

L a b o r a t o i r e  d e  P h y s i q u e  Q u a n t i q u e  U n i v e r s i t 6  P a u l  S a b a t i e r  

118 ,  r o u t e  d e  N a r b o n n e  F - 3 1 0 6 2  T o u l o u s e  C e d e x ,  F r a n c e  

C o n t e n t s  

1 T h e  k i c k e d  r o t o r  p r o b l e m  2 

2 T h e  R o t a t i o n  A l g e b r a  6 
2.1 The Polynomial  Algebra 5oi . . . . . . . . . . . . . . . . . . . . . . . .  6 
2.2 Canonical calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 
2.3 The Rota t ion Algebra ,4i . . . . . . . . . . . . . . . . . . . . . . . . .  9 
2.4 Smooth functions in .41 . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

C o n t i n u i t y  w i t h  r e s p e c t  t o  P l a n c k ' s  c o n s t a n t  11 
3.1 Mean values of observables . . . . . . . . . . . . . . . . . . . . . . . . .  12 
3.2 The t ime evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 
3.3 The spect rum of observables . . . . . . . . . . . . . . . . . . . . . . . .  14 

4 S t r u c t u r e  o f  t h e  R o t a t i o n  A l g e b r a  `4/ 15 

S e m i c l a s s i c a l  a s y m p t o t i c s  for  t h e  s p e c t r u m  17 
5.1 2D lat t ice electrons in a magnetic field . . . . . . . . . . . . . . . . . .  18 
5.2 Low field expansion . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .  19 
5.3 Qual i ta t ive  analysis of the spectrum . . . . . . . . . . . . . . . . . . . .  23 

E l e m e n t a r y  P r o p e r t i e s  o f  t h e  K i c k e d  R o t o r  26 
6.1 The Furstenberg Algebra . . . . . . . . . . . . . . . . . . . . . . . . . .  26 
6.2 Calculus on BI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 
6.3 Representat ions and structure of 131 . . . . . . . . . . . . . . . . . . . .  2 8  

6.4 Algebraic Propert ies  of the Kicked Rotor . . . . . . . . . . . . . . . . .  30 

L o c a l i z a t i o n  a n d  D y n a m i c a l  L o c a l i z a t i o n  34 
7.1 Anderson's  Localization . . . . . . . . . . . . . . . . . . . . . . . . . .  34 
7.2 The Observable Algebra . . . . . . . . . . . . . . . . . . . . . . . . . .  38 
7.3 Localization Cri ter ia  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 
7.4 Localization in the Kicked Rotor . . . . . . . . . . . . . . . . . . . . .  43 



1 T h e  k icked  rotor  p r o b l e m  

One considers a spinning particle submitted to rotate around a fixed axis. Let 0 E 
T = R/27rZ be its angle of rotation, L c R its angular momentum, I its moment of 
inertia, # its magnetic moment, and B a uniform magnetic field parallel to the axis 
of rotation. Its kinetic energy is given by : 

L 2 
~t0 ~ + ~ B L ,  (1) 

We assume that  this system is kicked periodically in time according to the following 
Hamiltonian : 

L 2 
Tl = ~-[ + p B L  + k cos(0) ~ 5(t - n T )  . (2) 

nEZ 

where T is the period of the kicks, and k is a coupling constant representing the kicks 
strength. Here 5 is the Dirac measure. Classically the motion is provided by the 
solution of the Hamilton-Jacobi equations : 

dO cOTl dL 07-I 
dt - cOL dt - 08 " (3) 

Between two kicks, 0~-//c90 = 0, so that L is constant whereas 0 varies linearly in 
time. When the kick is applied, L changes suddenly according to L ( n T  + O) = 
L ( n T  - O) + k sin(0). If we set : 

A ~ = T ( L ( n T - O )  + # B )  O ~ = O ( n T - O ) ,  (4) 

the equation of motion can be expressed as : 

A.+I = As + K sin(0.) 0.+1 = On + An+l mod 27r , (5) 

where K is the dimensionless coupling strength namely : 

k T  
K -  I (6) 

The phase space is the cylinder C = T x R, if A is considered as a real number. If we 
set  

f(0,  A) = (0', A') 8' = 0 + A + K sin(P) A' = A + K sin(P) , (7) 

the solution of the equation of motion can be written as : 

(0,~+l,An+l) = f(On, An) �9 (s) 

f is an analytic diffeomorphism of the cylinder C, which is area preserving, namely 
dO ~ A d A '  = dO A d A ,  and a twist map, namely cOO~/OA > 0, which preserves the ends 
(see the course of John Mather in this issue). We remark that f also commutes with 
the translation A ~-~ A + 2~r of the action variable A in such a way that it also defines 
a map of the 2-torus T 2. 



The orthodox way of quantizing this model consists in choosing the Hilbert space 
/C = L2(T, dO/27r) as the state space, and replacing L and 0 by operators as follows : 

hO 
L -  P = multiplication by V(0) ,  (9) 

i 00 

whenever )2 is a continuous 27r -periodic function of the variable 0 . Quantum Me- 
chanics requires using a new parameter h, the Planck constant which gives rise to a 
new dimensionless parameter : 

h T  _ 47r b'QM , (10) 
"Y- I //ca 

where vCL = 1 / T  is the kicks frequency, whereas/]QM is the eigenfrequency of the free 
quantum rotor in a zero magnetic field. To compute the motion, we need to solve 
SchrSdinger's equation, namely, we look for a path t ~ R ~ r c tC such that  : 

L 2 
iliCt = H( t ) r  H( t )  = - ~  + # B L  + k cos(0) ~ 5(t - n T )  . (11) 

nEZ 

The &kicks may create a technical difficulty. To overcome it let us consider a smooth 
approximation 5~ of 5 given by a non negative Ll-function on R supported by [0, e], 
with integral equal to 1. The solution can be given in term of a convergent Dyson 
expansion. Then letting e converge to zero, we get the following result (see Appendix 
1): 

T h e o r e m  1 The solution of  (11) is given by the following evolution equation : 

C T - 0  = F - I ' r  - F - 1  = e-iA2/2"re-iKc~176165 i9 (12) 

where 

A = T ( L + # B )  , ~ ) = ( # B ) 2 - - ~ .  (13) 

Let us also introduce the dimensionless magnetic field x : 

X 2 
x = - # B T  => /) = ~--~. (14) 

The operators of the form )2 whenever 1~(0) is a continuous 2rr -periodic function of 
the variable 0, can be obtained as the norm limit of polynomials in the operator 

U = e/~ . (15) 

In much the same way, one can quantize the action in the torus geometry by consid- 
ering the operator : 

V = e -iA . (16) 

U and V are two unitary operators satisfying the following commutation rule : 

U V  = ei~VU . (17) 



The C*-algebra generated by these two operators is the non commutative analog of 
the space of continuous functions on the 2-torus. By analogy with the commutative 
case, this algebra will be seen as the space of continuous functions on a virtual space, 
the "quantal phase space". Any such function will be the norm limit of polynomials 
of the form : 

a = ~ a ( m ) U m l V ' ~ 2 e  - '~'~' '~2/2 , (18) 
mEZ2,]m[_<N 

where the a ( m ) ' s  are complex numbers. We denote by .A~ the norm closure of this 
algebra. Whenever 7 = 0, this algebra coincides with the space C(T 2) of continuous 
functions on the 2-torus. One remarks that cos(0) E J~,  but there is no way of 
writing F0 = exp ( i A 2 / 7 )  as an element of A~ since it is not periodic with respect to 
A. Therefore F0 ~ JLy in general. However, the following properties hold : 

( i ) F o V F o  ~ = V ( i i ) F o U F o  1 = U V - l e  ~ / 2  , (19) 

so that, setting D0(a) = F o a F o  1 for a C .A~, ~0 defines an automorphism of .A~, which 
coincides for 7 = 0 with the free rotation f0 in T 2, namely : 

fo(0, A) = (0 + A, A) , (20) 

In particular if V ~ 0, a E J[~, we get : 

~ ( a )  = F a F  -1 = eiK c~176 Do(a)e-~K c~176 e .A~ , (21) 

which means that D is an automorphism of .A~. 
At last, D admits a classical limit as 7 ~ 0, namely the automorphism of C(T 2) 

corresponding to the standard map (see section 3 below). For if V = K cos(0), let us 
denote by/2~ the "Liouville operator" defined by : 

))a - a)) 
s  - - -  , (22) 

iv 

the limit of s as V ~-+ 0 coincides with the Poisson bracket of V with a, and ~ can 
be written as : 

= e -c~  o Do �9 (23) 

To summarize, we have obtained an algebraic framework describing the quantal ob- 
servables which is completely analogous to the classical description of the system, and 
which converges to the classical analog as V ~ 0. In this framework, 

(i) the observable algebra .A~ is the non commutative analog of the space C(T 2) 
of continuous functions on the classical phase space T 2. 

(ii) the quantal evolution is described through the automorphism ~ of ~ which 
admits the standard map as a classical limit. 
Before leaving this section, let us describe the complementary point of view, given in 
wave Mechanics by the Feynman path integral, which happens to be exact and finite 
dimensional in this case. 

L e m m a  1 I r e  E C~162 t h e n  the  f o l l o w i n g  f o r m u l a  ho lds  : 

( e - ~ A ' / ~ r  (u)  = e - '~ /4  / + =  du '  e,(, . . . . .  ) ~ / 2 ~ e - i ~ ' / ~ r  . (24) 



P r o o f  : From (9)&(13), we get A = - i 7 0 / 0 0  - x .  If r E C ~ ( T ) ,  let (r its 
Fourier series, so tha t  : 

�9 . f L  '~ dO'ei,~(o-o')-,(~,~-~)212~r ) (0)-- E "~ E 
nEZ nEZ 

To compute  the dis t r ibut ion kernel coming into this sum, we use the Poisson summa- 
tion formula : 

C '~(~176 ~ 2 ~ i(o-o'+~+2~l)~/2,~ 

nEZ ~ IEZ 

Now we perform the change of variables u' = 0' + 2~rl, u = 0, and the sum over l E Z 
will give rise to an integral over R with respect to u',  leading to (24). 

Using (12)&(24), we immediately get the following Feynman path  integral repre- 
sentat ion : 

C o r o l l a r y  1 For any  t ~ N and r E C~176  get : 

(25) 

where Uo = u, and the right-hand-side defines a convergent oscil latory integral which 
is periodic of  period 27r with respect to u. 

R e m a r k  : The expression contained in the phase factor 

s(~l...,~,;~o,x)= ~ ((us-~s-l-x)~_Kcos(~D) 
]<s<t-2 2 

(26) 

is nothing but  the "Percival" Lagrangean or the "Frenkel-Kontorova" energy func- 
t ional  used by Aubry  and Mather  to describe the trajectories  of the s t andard  map. 
For indeed the s ta t ionnary  points of such a Lagrangean are finite sequences (Us)l<s<t 
satisfying the recursion relation : 

2us - Us+l - us - ,  + Ks in (us )  = 0 ,  (1 < s < t -  1) , u t -  ut-1 - x + K s i n ( u t )  = 0 . 

In par t icular  if we set ps = us - "//.s-1 (for 1 < s < t) we get Us+l = us + Ps+l for 
0 < s < t - 1, and ps+l = ps + Ks in(us)  for 1 < s < t - 1, x = pt + K s i n ( u t ) ,  
namely we recover the s tandard  map (5) in R 2 now instead of T ~, for a t ra jec tory  
(00, A 0 ) , ' " ,  (0,, At)  such that  0o = uo mod 27r, and At+l = x mod 27r. 

2 The  R o t a t i o n  Algebra 

2 . 1  T h e  P o l y n o m i a l  A l g e b r a  7)s 

In this section we define properly the algebra .h v and we will describe without  proof  
its most impor tan t  propel t ies .  We refer the reader to [BaBeF1] for more details.  
Actual ly  given an interval I of R,  we will rather  consider the algebra .AI which is 



roughly speaking the set of continuous sections of the continuous field 7 E I ~-* .A v. 
The semiclassical limit will be included whenever I contains 7 = 0. 
Let I be a compact subset of R. The polynomial algebra Pl  is defined as follows : 
- the elements of P1 are the sequences (a(m))meZ2 with finite support, where for each 
m = (ml, m2) e Z 2, a (m)  : 7 c I ~ a(m, 7) E C is a complex continuous function 
on I. 
- Px admits a natural structure of C(I)-module by setting, for a, b E Pl ,  and l E C ( I )  

(a + b) (m) = a(m) + b(m) ha(m; 7) = )~(7)a(m; 7) �9 (27) 

- any element a c 7)i admits an adjoint a* defined by : 

a*(m; 7) = a ( - m ;  7) , (28) 

where ~ denotes the complex conjugate of z in C. 
-if a, b E 7:'I, their product is defined by : 

(ab) (m;7)  = ~ a(m' ;  7)b(m - m';  7 ) e  i ' rm '^ (m-m ' )  , (29) 
m ~ E Z  2 

where we have set if m/, m"  E Z 2 : 

m ' A m "  , ,, 1 ,, (30) = m l m  2 - m 2 m  1 . 

- the topology on 79I, is the direct sum topology obtained from the uniform norm on 
c(i). 
Denoting by 79~ the algebra 791 whenever I = {7} it follows that  79~ = 797+4.. More- 
over setting c~(a) = ((-)ml'~2a(m))m~z~ , c~ defines a *-isomorphism between 797 and 
79~+2~. Thus, as far as 79~ is coneerned, one will consider that 7 is defined rood. 27r. 
The same definition holds if we replace I by the toms T namely the continuous func- 
tions on I by the continuous 27r-periodic functions on R. We will denote by 79 the 
corresponding algebra. 

The following elements in 791 are remarkable : 

I ( m ; 7 )  = ~ m , O  U(m; 7) = 6m,(1.o) V ( m ; 7 )  = ~ m , ( o , 1 )  �9 (31) 

For indeed, I is the identity of 79I whereas U, V, are unitaries namely U U *  = U * U  = 

V V *  = V * V  = I, and obey to the commutation rules (17). Moreover, 79I is alge- 
braically generated by U, V as a C(I)-algebra, namely if a c 79I, it can be written as 

a =  ~ a ( m ) W ' ~ l V ' ~ 2 e  -i~'~1m2/2 . 
m t E Z  2 

It will be convenient to introduce the "Weyl operators" as follows : 

W(m)  = U TM v m 2 e  - iTra lra2/2  . (32) 

From the interpretation given in the previous section, it follows that  79I is the set 
of trigonometric polynomials over the "non-commutative" 2-torus. In particular if 
I = {0}, we recover the convolution algebra, which by Fourier transform is exactly 
the algebra of usual trigonometric polynomials. 

The "evaluation" homomorphism r/~ is defined as the map from 791 into 79~ by : 

~7~(a) = (a(m;7))mEZ 2 . (33) 

It is immediate to check that  ~ is a *-homomorphism, namely it is linear, and pre- 
serves the product  and the adjoint. 



2 . 2  C a n o n i c a l  c a l c u l u s  

Using the analogy with the space of trigonometric polynomials on the 2-torus, we now 
define some rules for the differential calculus. 
The integral is given by the trace defined by : 

~(a) : a(O) c C ( 5  �9 (34) 

We will denote by 7~(a) the value of T(a) at V. The trace ~- is a linear module map 
from 7'i  into C(I)  satisfying : 

(i) posit ivity : T(a*a) = ~m,eZ 2 la(rn)l 2 > 0, a E ~ / ,  
(ii) normalization : T(I) = 1, 
(iii) trace proper ty  : 1-(ab) = r(ba),  a, b E Pl .  

We remark tha t  the value of ~-(a) at V = 0 is the 0 th Fourier coefficient of rl0(a), 
namely the integral of its Fourier transform : 

dOdA 
-(a)l~:o = fT~ -~-~--2 ad(0, A) . (35) 

where ad is the Fourier transform of r/0(a). 
The  angle average, is defined by the element (a / in PI  given by : 

(a)(m) = 5m,,oa(O, m 2 ) .  (36) 

The map  a ~-* Ca) is a module-map taking values in the commutat ive subalgebra Z)I 
generated by V as a g(I) -module .  The usual Fourier transform permits to associate 
with any element b of Z)i a continuous function of (7, A) E I • T denoted by bay as 
follows : 

bav(3 ' ,A)= ~ b(O, m2;v )e  - ~ 2 A  �9 (37) 
m , E Z  ~ 

The mapping  b E Z)i ~-~ b~  E C(I  x T),  is a . -homomorphism, namely (bc)a~ = b~ca~ 
and (b*)~v = b**. We will say that  b E 7Pi is positive whenever ba~ is positive. Using 
these definitions, the angle averaging satisfies : 

(i) positivity proper ty  : (a'a) > 0 , a E P l  
(ii) projection proper ty :  (Ca)) = (a) , 

(iii) normalization : (I) = 1 , 
(iv) conditional expectation : (ab) = (a)b , (ba) = b{a) , if b E D1 , a E P l  - 

(38) 
A differential s tructure is defined on P / t h r o u g h  the data  of two ,-derivations 00 and 
OA given by : 

(Ooa) (m) = i m l a ( m )  (OAa) (m) = i m 2 a ( m )  . (39) 

These two derivations 0" (if # = 0, A) actually commute and satisfy : 

(i) they are C( I ) - l i nea r  
(ii) c%(a*) = (Oga)* a E "~I  , (40) 

(iii) Ot,(ab ) = (Ot, a ) b + a (Ogb) a, b E "PI , 
(iv) o o g  = i u  , o o v  = o ,  o A u  = o ,  OAK = - i v .  
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Moreover one can exponentiate them, namely defining by {PO,A; (0, A) C T 2} as the 
2-parameter  group of *-automorphisms given by : 

po,A(a)(m) = e~('~'~ , (41) 

we get : 

= \ 0# /#=A=0 # = 0 ,  A .  (42) 

Actually PO,A is a module-*-homomorphism such that  (0, A) E T 2 ~-~ po,A(a) E PZ is 
continuous and : 

PO,A o PO',A' = PO+O',A+A' , (43) 

If a, b E 7)z their Poisson (or Moyal [Bou]) bracket {a, b} is defined as follows : 

{ a , b } ( m ; 7 ) =  ~ ]  a ( m ' ; 7 ) b ( m - m ' ; 7 ) 2 s i n ( - ~ m ' A ( m - m ' ) )  , (44) 
m t E Z  2 

where we set ( s i n x ) / x  = 1 for x = 0. In particular that  for "~ = 0, it coincides with 
the usual Poisson bracket, namely : 

{a, b}~l = {a~l, b~l} = OoaclOAbr -- OAaclOobr , (45) 

From (44), the right-hand-side defines a continuous function of "y on I ,  so that  
the Poisson bracket {a, b} still belongs to T'x. The "Liouville operator" associated to 
w E "Pl is the module map defined by : 

L~(a)  = {w, a} , a E T ' I .  (46) 

The  properties of this operator  are the following : 

(i) L~ is C( I ) - l i nea r  
(ii) L~(a*) = gw. (a)* w, a C P l  , (47) 

(iii) L~(ab) = n~.(a)b + aL~.(b) w, a, b E Pz , 
(iv) [L~,,L~,] = L{~.,~,} (Jacobi's identity) w , w '  E P i  �9 

We also remark that  

T(po ,a (a ) )=~ ' (a )  r ( { a , b } ) = 0  a, b E P I , ( O , A )  e T  2,  (48) 

which is equivalent to the "integration by parts formula" : 

"r(O~,a. b) = - ' r ( a .  O~,b) 7- (L,~(a). b) = --T (a .  L~(b)) , (49) 

2 . 3  T h e  R o t a t i o n  A l g e b r a  A z  

In order to get all continuous functions on our non commutat ive torus, we ought to 
define the non commutat ive analog of the uniform topology on Pz. This can be done 
by remarking tha t  in the commutat ive case, the uniform topology is defined through 
a C*-norm, namely a norm on the algebra which satisfies : 

Ilabl] _< Ilall[Ibll [ [ a ' a l l - - I l a l l  2 �9 (5o) 



The importance of this relation comes from the fact that  such a norm is actually 
entirely defined by the algebraic structure, namely it is given by the spectral radius of 
a*a. Therefore, the algebraic structure is sufficient and the uniform topology becomes 
natural.  
To construct such a norm, one uses the representations of 79I. A "representation" of PI  
is a pair (:r, 7-/~), where 7-/~ is a separable Hilbert space, and 7r is a , -homomorphism 
from 79I into the algebra B(7-/~) of bounded linear operators on 7-/~. The  formulae 
(17)&(18) give an example of representation for which ~ = L2(T, dO/27r). In partic- 
ular 7r(U), 7r(V) will be unitary operators on 7-/~ so that  if a �9 79I, one gets (if HfllI 
denotes the sup norm in C(I)) : 

Jbr(a)ll _< ~ lla(m)Ib < oc. (51) 
m E Z  2 

Two representations (Tr, 7-/~) and (C, 7-/w) are equivalent whenever there is a uni tary 
operator  S from 7-(~ into 7"/~, such that  for every a �9 791 : 

S~(a)S -l : r'(a) �9 (52) 

Up to uni tary equivalence, one can always assume that  7-/~ = ~2(N), so that  the family 
of all equivalence classes of representations of 79I is a set denoted by Rep(791). We 
remark tha t  tile norm 117r(a)II depends only upon the equivalence class of 7r. We then 
define a seminorm on 791 by : 

Ilalb = sup{ II=(a)II; ~ �9 mep(79J}.  (53) 

This notat ion agrees with the sup-norm on C(I) if a �9 C(I).  Then one has [BaBeF1] : 

P r o p o s i t i o n  1 The mapping a �9 79I ~-~ ]la[ll �9 I%+ is a C*-norm. 

R e m a r k  : The only non trivial fact in this s tatement is that  it is a norm, namely 
tha t  Ilallz : 0 implies a : 0. 

D e f i n i t i o n  1 The algebra .,4i (resp. .A) is the completion of 79i (resp. 79) under the 
norm I1" I]x (resp. I]" liT). ,4 is called the "universal rotation algebra". 

P r o p o s i t i o n  2 1)-Any representation of 79i extends in a unique way to a represen- 
tation of A I  
2)-If B is any C*-algebra, and/9 is a *-homomorphism from 79I to B, then/9 extends 
in a unique way as a *-homomorphism from A~ to 13. 
3)-Any pointwise continuous group of *-automorphisms of 791 extends in a unique way 
as a norm pointwise continuous group of *-automorphisms of,41. 
4)-The trace r and the angle average (.) satisfy : 

IlT(a)llI < Ilalb II(a)lb < Ila11I a �9 791 , (54) 

and therefore they extend uniquely to A t .  
5)-The norm I1" I[I satisfies : 

Ila11i = supl l~(a) l l  a �9 79I . (55) 
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In practice the explicit computation of the norm does not require the knowledge of 
every representation. It is enough to have a faithfull family, namely a family {Trj}jeg 
where J is a set of indices, such that  ~rj(a) = 0 for all j ' s  implies a = 0. In other 
words njegKer(Trj) = {0}. We recall that  the spectrum Sp(a) of an element a of 
a C*-algebra with unit A, is the set of complex numbers z such that zI  - a is non 
invertible in A. 

P r o p o s i t i o n  3 Let (Trj)je J be a faithfull family of representations of the C*-algebra 
A, then : 

][a[[l = sup H~rj(a)[[ Sp(a) = closure{tJj~gSp(Trj(a))} . (56) 
j E J  

In particular if 7r is faithfuU (namely if J contains only one point), [[a[[i = lit(a)[[ 
and Sp(a) = Sp0r(a)). 

2 . 4  S m o o t h  f u n c t i o n s  i n  .AI 

Beside Pl ,  one can define many dense subalgebras of AI  playing the role of various 
subspaces of smooth functions. 
(i) For N E N, the algebra CN(AI) of N-times differentiable elements of 1)1 is the 
completion of .AI under the norm : 

1 1 , ~ ,  
I l a l l c" /=  ~ n! n'! IIO; OA (a)ll' " (57) 

O~_n,n ~ ; n T n  ~ ~ N 

(ii) Coo(.Az) = NN>OC~V(.Ax). It coincides with the set of elements a = (a(rn))meZ2 
with rapidly decreasing Fourier coefficients. It is a nuclear space, similar to the 
Schwartz space on the torus. Its dual space S(AI) is a space of non commutative 
tempered distributions which can be very useful in investigating unbounded elements. 
(iii) 7-/s(Ar) is the Sobolev space, namely the completion of Ps under the Sobolev 
norm : 

(T(a*a)+r(a*(--A)8/2a)) '/2 A =  2 2 Ilall .,1 + ( 5 8 )  

where --A is the Laplacean on the non commutative torus. The imbedding 7-/8' (.As) ~-* 
7C(Ax) is compact if s ~ > s and Coo(A1) = A~>07"/~(Ax), showing that  Coo(Ai) is a 
nuclear space. 
(iv) An element of AI  is holomorphic in some domain D of ( T + i R )  2 if the continuous 
mapping (0, A) e T 2 ~-~ Po,A(a) C At,  can be extended as a holomorphic function on 
D. A special interesting case consists in considering the algebra .Al(r) for r > 0, 
obtained by completing 7)i with the norm : 

miami,,, -- sup ~ ]a(m;7)[e rl'~ll , (59) 
~'EI m E Z  2 

where [m[1 = Iml[ + ]m21. Then .41(r) becomes a Banach ,-algebra of holomorphic 
elements in the strip D(r) = {[Im0] < r , limA[ < r}. 
(v) Let us consider now the case for which I is an open interval, and let ~o~ be the 
subalgebra of ~~ the elements of which have Fourier coefficients given by C~176 
on I. Let us define the operator 07 on T'~ ~ by : 

Ov a ( Oa(m) / (60) 
= )m Z2 " 
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Then az obeys the following rules (Ito's derivative) : 

(i) it is linear 

(ii) cO,~(a*) = (O,~a)* a E "R~ , (61) 
(iii) d T ( a ) / d ' , / =  "r(O.ya) a c 7:'f ~ , 
(iv) O~(ab) = (c9~a)b + a(O~b) + �89 (OoaCgAb - cOAaOob) a, b e 7 ~  . 

One can extend 0 r to the dense subalgebra CN'L(AI ) ,  obtained by completing P T  
with respect to the norm : 

[]a[[c~,L,1 =- MaxI<_L ]]O~a[[cN,I . 

Let [[. [] be an algebraic *-norm. Then the following norm is also an algebraic ,-norm. 

[[a[[c1 = I]a[[1 + [[c9oa[[ + HOAaI[ + HcO~a[[ �9 (62) 

By recursion we will set II' [[cN = (]1" HcN-')c1 with ]]. ]]co = H" H. It defines then an 
algebraic *-norm on gN'N(AI) equivalent to [[" []C~,N 

3 C o n t i n u i t y  w i t h  r e s p e c t  t o  P l a n c k ' s  c o n s t a n t  

Since the effective Planck constant 7 is a tunable physical parameter in many exam- 
ples, one can wonder whether the various quantities of interest such as mean values of 
observables, or the evolution, or the spectrum of observables, are continuous functions 
of % The main difficulty in dealing with this problem is that the family of algebras 
V ~ -s even though continuous in the sense of Tomiyama [Tom], is not locally trivial. 
Indeed, A z is isomorphic to A~, if and only if 7 = 4-7~ rood 27r [Rie, PiVo]. Therefore 
such continuity properties must be carefully studied. 

We will give in this section and again without proofs, three kinds of continuity 
properties. The first concerns the mean value of observables, namely the function 
-r(a) if a E Az. One important consequence is the Weyl formula for the semiclassical 
limit of the density of states. The second type of result concerns the continuity of the 
evolution. It requires the use of a non commutative analog of the Canchy-Kovaleskaya 
theorem. In particular, the semiclassical limit of any time correlation function at fixed 
time, is equal to the corresponding classical expression. The last type of result is the 
continuity of the gap edges of the spectrum of any observable. This fact will permit 
to compute the spectrum numerically (see section 4). 

It is to be noticed that the algebra A~ can be constructed from the algebra of 
pseudodifferential operators of order zero acting on the unit circle. These results are 
well known in the context of pseudodifferential calculus. However, it turns out that 
all proofs given here are purely algebraic, and do not require any explicite reference 
to the form of the symbol. In particular they are valid for any element in the norm 
closure. But the closure contains much more than pseudodifferential operators, it also 
contains Fourier integral operators, and elements with no special behaviour. 

3.1 Mean values of observables 

Our first result is elementary in view of the definition of the algebra .At. 
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P r o p o s i t i o n  4 If a E ,41, the mapping 7 E I ~ ~'7(a) is continuous. 

P r o o f  : If a E 7~i the result comes from the definition of 7~1.If a E ,41, given c > 0, 
there is a r  7~i such that ]]a-adix < ~, and therefore by (54), supTei ]TT(a)-~'7(ae)l <_ 
e. Thus "r(a) is a uniform limit of continuous function on I namely it is continuous. 

Let us now consider a self adjoint element H = H* in `4I and let ~ be its spectrum. 
Let f be a continuous function on Z. Then the map f E C(Z) ~ TT(f(H)) E C is 
linear positive and bounded. Therefore there is a Radon measure jV'.y on R supported 
by Z such that  : 

(f(H)) = fI~ dAf~(E)f(E) , (63) v~ 

This measure is called the "density of states" of H. The "integrated density of states" 
(IDS) is : 

NT(E) = fu<E dAfT(E'). (64) 

It is a non decreasing function of E E R. From the proposition 4, we get [BaBeF1] : 

P r o p o s i t i o n  5 If H = H* E `41 letJV'~ be the integrated density of states of H. Then 
if E is a point of continuity of Aft, we get : 

lim Af~,(E) = Aft(E) , (65) 

If I contains 3' = 0, since .4o = C(T 2) it is easy to check that : 

Afo(E)=fEdAfo(E')=fHc,(O,A)<E d O d A _  _ 47r2 (66) 

where Ha  is the Fourier transform of ~/o(H). Thus N0(E) is the area of the set 
H ~ l ( - c ~ ,  E) in the 2-torus. A consequence of the Proposition 4 is the following : 

C o r o l l a r y  2 If I contains "7 = 0 and H = H* E Az let Af~ be the integrated density 
of states of H. Then if E is a real number such that the level set H~I (E)  has zero 
Lebesgue measure in the 2-torus, we get : 

limAf~(E) = N 0 ( E ) ,  (Weyl's formula) .  (67') 

Let us also mention the following non trivial result [BaBeF1] : 

P r o p o s i t i o n  6 If H = H* E Pl, then its integrated density of states Af~ is continuous 
with respect to E for any "7 E I. 
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3 . 2  T h e  t i m e  e v o l u t i o n  

Our next result concerns the continuity of the evolution with respect to 7. Le t  w E ~i:~I, 
and let us consider the automorphism of A z (for 3' ~ 0 ) given by : 

~ ( a )  = e-m~(w)/~aem~(~)/~ , (68) 

Is it possible to prove that  ~ can be continued at 7 = 0 in such a way as to define an 
automorphism of .4i ? To show that it is actually possible, let us consider the algebra 
At( r )  introduced in 2.4 with the norm defined by (58). Then we get [BeVi]: 

T h e o r e m  2 Let  w = w* be an e lement  of  ~4i(r) where I is an interval  containing 
7 = O. Then  fo r  any  p such that 0 < p < r, 
(i) the Liouvi l le  operator L~ associated to w is well defined as a bounded linear oper- 
ator f r o m  .Ai(r)  into .Al(r  - p), 
(ii) f o r  t smal l  enough, exp(tL~) defines a linear bounded operator f r o m  A l ( r )  into 
A z ( r  - p),  
(i i i)  exp(tLw) can be extended as a *-automorphism of  A I  f o r  any t �9 R ,  in such a 
way as to sat is fy  : 

de tn~ (a) _ etL~ (L~(a)  ) (69) 
dt 

f o r  any a E A i ( r ) .  

To prove this result, we will proceed in several steps. First of all : 

L e m m a  2 I f  w �9 .Al(ro) and a �9 A1(r ) ,  (r < ro), then fo r  any p such that O < p < r 
one has : 

[l{w, a} IIr_p < 211wllr~ (70) 
- e ~ p ( r o - r - p )  " 

P r o o f :  From (44), using the inequalities ]sin(x)l < Ixl, Iml < Im'l + Im - m'l 
whenever m, m ' � 9  Z 2 and Im' A m " l <  I m~ I Im"21+ I m~ H m " l l w e  ge t :  

II{w, a}ll,,-pll -< sup~el Em,,,,v,r z ~ er~ ~/)le'm"la( m",  7) 
(71) 

�9 "" e -(~~247 (Im~llm~l + Im~llm~l) �9 

The inequality (70) will be obtained by using the estimate sup,~ez Inle -vl'~l = 1/ep.  

L e m m a  3 I f  w �9 A1( r )  f o r  any r such that 0 < p < r and any n �9 N one has : 

P r o o f  : One can write 

_< = 

for any family (Pk)l<k<~ such that  po = 0 < p~ < . . .  < P~-l < P~ = P. Using the 
inequality (70), we get : 
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. . . .  p 1 ( 2 )  n ~__l~1 1 
L~ -< ~ j I lw l l~ "  Pk(Pk - Pk-i)  " 

Let us choose Pk = pk /n ;  since n'~e -~ < n!, we immediately get the result. 

Proof of theorem 2 : the point (i) is exactly the content of the Lemma 2. To prove 
(ii), it follows from the Lemma 3 that  if It] < p2/(2Ilw]lr ) = T ,  the expansion for 
exp(tL~) in ~owers of t converges in norm as an operator from .Ai(r) into .Ai(r - p) 
and in addition : 

1 (73) 
I le 'L~l l  . . . .  ~ -< 1 - 2 l t l i i w l l r / p  ~ " 

Proving (iii) is more subtle : if we set /3t = e tLw, we observe that  since L~ is a 
*-derivation, by (47), then, if a, b e .Ai(r) : 

(i) ~t(ab) = ~t(a)/3t(b) for Itl < T ,  
(ii) /3t(a*) = ~t(a)* for Itl < T ,  

(iii) ~t+~(a) = ~t (~,(a)) for Itl + Is] < T ,  
(iv) d~t(a) /d t  = ~t(L~(a))  for It[ < T .  

(74) 

Therefore given any representation 7r of "/ol, 7r can be extended as a representation of 
.Al thus of Az(r ) .  In particular, 7r o fit gives also a representation of A i ( r ) ,  so tha t  by 
the same type of argument  used in 2.3 (see (51)&(53)), one gets 1lTr o/3t(a)] b < ]]all1 , 
and since 7r is arbi t rary  : 

II~(a)lb ~ Ilalb, for Itl < T. (75) 

In particular, /3t  can be extended by continuity to .As and the extension still satisfies 
(74). Now if t C R,  let n be a positive integer such that  I t /n  I < T .  Then we set 

(/3t/,~) "~. Thanks to (74) (iii), it is standard to check tha t  this definition does not 
depend upon the choice of n. Moreover, (74) continues to hold at any value of t : this 
is obvious for (i), (ii), (iii). (iv) also holds once one notices that  L~ commutes with 
/3t. Therefore (/3t)teR defines a 1-parameter group of *-automorphisms of .AI. At last 
it is norm-pointwise continuous, namely : 

lira IIA(a) - alli = o 
t~-*O 

(76) 

For indeed, by a 3e-argument, it is enough to check it for a E .Ai(r), which is simply 
a consequence of the Lemma 3. 

3.3  T h e  s p e c t r u m  o f  o b s e r v a b l e s  

Our last result concerns the continuity of the spectrum with respect to 7. Let 
(E(t)) teR be a family of compact subsets of a topological space X.  This family is 
continuous at t = to if the two following properties hold : 

(i) it is continuous from the outside, namely given any dosed set F in X,  such that  
E(to) N F = 0, there i 5 > 0, such that  if It - to[ _< 5, then E(t) N F = O. 



15 

(ii) it is continuous from inside, namely given any open set O in X, such that E(t0) M 
O ~ 0, there is 5 > 0, such that if I t - t01 _< 5, then E(t) M O ~ 9. 

If X = R a gap of E(t) is a connected component of R - E(t). One can check that 
this definition is equivalent to the continuity of the gap edges of E(t) at to. 
For a E .AI we set E(7) = Sp(r/7(a)), whenever "y 6 I. The main result of this 
subsection is [BaBeF1] : 

T h e o r e m  3 For any normal element a E ,4i, (namely such that aa* = a'a) ,  the 
family (E(7))~e I is continuous at every point of I .  

The proof of this theorem will not be given here. It can be found in [BaBeFl]. 
However, it is of very high importance in view of the numerical computation of the 
spectrum. For we will see in the next section that the spectrum can be easily computed 
on a computer for rational values of 7/27r. The continuity of the gap edges everywhere 
on I implies that this type of computation is sufficient to get an idea of the spectrum 
for irrational values of 3,/2rr. 

Actually for smooth self adjoint elements of .AI one gets a better result [BaBeF1], 
namely : 

T h e o r e m  4 For any self adjoint element H E C3'IAj, the gap edges of any open gap 
of (E(7))~el are Lipshitz continuous at every point of I .  

Similar but weaker results have already been obtained previously by Choi et al. 
[ChE1Yu], and by Avron et al. [AvSi] on the almost Mathieu model. They found 
HSlder continuity only. Here we get a stronger result. However the Lipshitz constant 
depends explicitely of the width of the gap considered, and it diverges whenever the 
width tends to zero. 

As we will see in section 4 below, there is no chance to get a better result because 
the gap edges have discontinuous derivative at each rational value of ~//27r. On the 
other hand, if a gap closes for some value of "y then generically with respect to H E 
C3,1jtI, we only get H61der continuity with exponent 1/2 near this point. 

4 Structure  of the  Rotat ion  Algebra .4i 

In this section we will give without proofs, a description of the structure of the rotation 
algebra. The reader interested in the proofs will be refered to [BaBeF1]. 

Let us consider first the case "y = 0. The algebra 7'0 is then the convolution algebra 
associated to the group Z 2. Therefore by Fourier transform, one transforms it into 
the algebra of trigonometric polynomials with the pointwise multiplication. More 
precisely, if a E P0, we set : 

ar = ~ a ( m ) e  ~(eml-Am2) �9 (77) 
m 6 Z  2 

This a trigonometric polynomial. The main properties of the Fourier transform are : 

(ab)r A) = ac,(O, A)bcl(O, A) , a, b E Po , (78) 
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and 

(a*)r A) : ar A)* , a e 7)0 . (79) 

It follows tha t  for every (0, A) E T 2, the map a E Po ~ ar A) E C is a represen- 
tat ion.  Therefore : 

sup la~l(0, A)l < Ilallo , a E Po �9 (80) 
(0,A) E T  2 

In par t icular ,  the  Fourier transform a E Po ~ ar E C(T2), extends to fl~ as a *- 
homomorphism. As a consequence of the Gelfand theorem we get the following result 
[BaBeF1] : 

T h e o r e m  5 The Fourier  transform a E Po ~ ad E C(T2), extends as a *- isomor-  
ph i sm f r o m  ,40 to C(T2). 

Let us now consider the case 7 = 2rcp/q where p, q are positive integers pr ime to 
each others. As we have seen in section 2, A z is isomorphic to Az+2~ , so tha t  one 
can assume tha t  0 < p < q without loss of generality. One can extend the previous 
analysis to this case by introducing two q • q uni tary matrices u and v satisfying : 

u q = I = v q , uv  = e2i~P/qvu . (81) 

The Fourier t ransform of a E P~ is then given by the following matr ix  valued function 

ar = ~ a(m)e ' (em,-Am~)w(m)  , (82) 
m E Z  2 

where : 

w(m)  = UmlVm2e -i~pmlm2/q . (83) 

We remark  tha t  in this last expression, w ( m  + qm ~) = w(m) ,  namely m is defined 
modulo q. 

An example of such pair  of matrices is given by : 

0 1 0 . . .  0 0 
0 0 1 . . .  0 0 

0 0 0 . . .  0 1 
1 0 0 . . .  0 0 

1 0 0 . . .  0 0 

0 A 0 .--  0 0 

0 0 0 - . .  A q-~ 0 
0 0 0 . ' .  0 A q-1 

, (84)  

where A = e 2~p/q. Actually, any such pair is uni tar i ly equivalent to this l a t te r  one. 
Let us also set : 

w ' ( m l ,  m2) = w ( - m ~ ,  m 0 , (85) 

to get the  following characterizat ion of J42~p/q [BaBeF1] : 

T h e o r e m  6 The Fourier  transform a E 7)2~p/q ~ acl C C(T 2) ~ Mq, extends as a 

*- i somorphism f rom .A2,p/q to the subalgebra Ccov(T 2, q) of C(T 2) | Mq, the e lement  

of  which being continuous funct ions  aci f rom T 2 into Mq satisfying the covarianee 
condition 

w ' (m)ad(O,  A)w' (m)  - l  = ad((0, A) + 2 ~ m p / q )  . (86) 
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The  main interest of this result is that  it makes it possible to compute the spectrum 
of an element a E A2,~p/q. For indeed for every (0, A) E T 2, the map rr(0, A) : a �9 
�9 A2,~p/q ~ acl(O, A) �9 Mq is a representation, and the family {Tr(0, A); (0, A) �9 T 2} is 
faithfull. Therefore, thanks to prop.3, denoting by e~(0, A), 1 < k < q, the eigenvalues 
of acl(O, A), the spectrum of a is : 

Sp(a) = Ul<k<qIm(ek) , Im(ek) = {ek(0, A) e C; (0, A) e T 2} . (87) 

Each set Im(ek) is called a "band".  The computation of the eigenvalues can be done 
numerically by matr ix  diagonalization. In many important  examples, such as the 
"Harper"  model (see Fig. 1) given by : 

HHarper = U ~- U* + V -I- V* , (88) 

it is possible to compute analytically the points in the 2-torus for which the band edges 
are reached. In these cases, the numerical computation of the spectrum requires to 
diagonalize only few matrices for each value of p/q [BaBeF1]. 

The  theorems 1 and 5 can be rephrased by characterizing the set of (closed two- 
sided) ideals of .A2,~p/q. If p = 0, any ideal J is given by the space of continuous 
functions on T 2 vanishing on some closed subset f~j of T 2. The map J ~ 12j is 
actually one-to-one. If p ~ 0, the same is true if we demand that  f t j  be invariant by 
the translations of period 27r/q in the 2-torus [BaBeF1]. However If ~//27r is irrational, 
we get the following result [Sla, BaBeF1] : 

T h e o r e m  7 If  7/27r is irrational the algebra .A~ is simple, namely there is no other 
ideal than {0} and ~ itself. 

C o r o l l a r y  3 If 3,/27r is irrational every representation of the algebra A z is faithfuU . 

A nice proof of theorem 6 was provided by Slawny [Sla], and the reader will find it 
in [BaBeF1]. The corollary is an immediate consequence of that  theorem, for if 7r is a 
representation of the algebra ~ its kernel is an ideal, namely it is either the algebra 
.A~, in which case 7r = 0, which is not possible since 7r(I) = 1, or it vanishes, namely 
7r is falthfull. 

Thanks to this last result, we can choose any representation to produce explicit 
calculations. The three theorems of this section are sufficient to characterize the 
algebra ~4i for any compact subset I of R.  For indeed thanks to (55) (prop. 2), J is 
an ideal of ~4x if and only if for any 3' E I,  ~ ( J )  is an ideal of . ~ .  The ideal structure 
is sufficient to characterize any C*-algebra B which is a homomorphic image of .AI. 

5 Semiclass ical  asymptot ics  for the  sp e c tr u m  

In this section we will denote by H = H* a selfadjoint element of AI,  and we intend to 
given a description of its spectrum when I is a small open interval around "), = 27rp/q. 
The same kind of results can be obtained for a unitary operator, and this will be left 
as an exercise to the reader. 
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5 . 1  2 D  la t t ice  e lectrons  i n  a m a g n e t i c  f i e l d  

In this subsection, we will describe a physical situation where the rotation algebra 
enters as an essential tool. It will give us a different intuitive description of the 
problem which may be useful. 

Let us consider a two dimensional lattice, with lattice spacing ~, that  we will 
identify with Z 2, on which charged particles like electrons or holes, are supposed 
to move. Their  quantum states will be wave functions r = (r  C g2(Z2). 
We suppose in addition that  a uniform magnetic field B is applied on this lattice, 
perpendicularly to the plane of the lattice. Let A = (A1, A2) be the corresponding 
vector potential,  namely a vector field on R 2 solution of the equation a lA2-02A1 = B. 
In the Hilbert space g2(Z2), we consider the "magnetic translations" T1, T2 studied 
by Zak [Zak], associated to the two basis vectors el = (1,0) and e2 = (0, 1) of Z ~, 
namely the unitary operators defined by : 

f(m-~,)6dl'Ar -- et~ ) , # : l, 2 , (89) T~r  : e 2 ' ~  m6 

where e is the electric charge of the particle, h is the Planck constant and the integral 
in the phase factor is computed along the segment joining the sites m - e~ and m. 
These two operators  satisfy the following commutat ion rule : 

T1T2 = e2i'~r162176 , (90) 

where r is the magnetic flux through the unit cell, and r = h/e is the flux quantum. 
Therefore these two operators generate a representation of the C*-algebra A~ where 
n o w  

V = 2rrr162 = const.B , (91) 

is proport ional  to the magnetic field. In practice, if the lattice is given by the positions 
of the ions of a metal,  6 is of the order of 1/~ so that  even with the highest kind of 
magnetic field that  can be produced in laboratories, namely B ~ 18 Teslas , we get 
3,/2~r ~ 0.5 10 -4 which is fairly small, and shows that  in this situation a semiclassical 
approximation will always be valid. However during the last ten years, networks with 
lattice spacings of the order of the micrometer have been built [PaChRa], leading to 
values of 3,/27r of the order of unity in magnetic fields not larger than 40 Gauss. This 
is why it has been necessary to go beyond the semiclassical regime. 

/,From the band theory of metals [MeAs], the conduction properties are given only 
by those electrons sitting in the conduction bands, namely with energies within an 
interval of order kO from the Fermi level, if O denotes here the temperature ,  and k 
the Bol tzmann constant. If we assume for simplicity that  there is only one such band, 
thanks to the so-called "Peierls substitution" [Pei], one can prove rigorously that  
the restriction H of the Hamiltonian to that  band is given by a selfadjoint element 
of the C*-algebra generated by the two magnetic translations [BehEva]. If several 
bands have to be considered, the Hamiltonian will be represented by a matr ix  with 
entries in this algebra. For B = 0, the band Hamiltonian H is represented through its 
Fourier t ransform (see section 4) by a continuous flmction Hcl on T 2. In Solid State 
Physics, one usually uses the quasimomentum notation k = (kl, k2) instead of (0, A) 
to represent a point in this 2-torus. Thus we get the following correspondence : 

( T 1 ) d  : e ' k l  , (T2)~l = e ~k~ , ifB = 0 .  (92) 
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The advantage of this latter notation is that  it restores the symmetry  between the 
two directions in the lattice, a natural  fact in the present context, even though it does 
not look so natural  in the kicked rotor problem. In this subsection, we will prefer the 
use of the quasimomentum notations instead of the action-angle ones. 

Let us now remark that  the representation given by (89) is actually a very natural  
one from algebraic point of view. For indeed, thanks to subsection 2.2 (34&(35), the 
Hilbert space g2(z2) can be seen as the completion L2(.Av, "r) of the prehilbert space 
P~ endowed with the scalar product (alb) = T(a*b). Let r /be  the natural  imbedding 
of P~ i n t o  L2(u4q,T). Since r(a*a) < ][a*all~, r /can be extended to Av by continuity. 
Then let rrCNS be the representation of A~ on this Hilbert space given by the left 
multiplication, namely 

7rcNs(a)r/(b) = ~?(ab) , a, b E ~ . (93) 

The  name "GNS" refers to Gelfand-Naimark-Segal [Dix], who defined and studied 
this representation in a C*-algebra. Then we claim the following [BaBeF1]: 

T h e o r e m  8 The representation of A~ given by the magnetic translations in (89) is 
unitarily equivalent to the GNS representation relative to the trace of A v. This repre- 
sentation is faithfull for any values of 3". 

Actually, the representation given by the magnetic translations depends upon the 
choice of a vector potential. The GNS representation corresponds to the so-called 
"symmetr ic  gauge", namely A = B ( - x 2 ,  xl). Every other gauge can be reached by a 
unitary transformation.  

5 . 2  L o w  f i e l d  e x p a n s i o n  

We now consider an interval I of the form I = [-e0, e0], for some ~0 > 0, and let 
H = H* belong to Jr1. We will describe a semiclassical expansion near a bo t tom well. 
In order to do so, let us assume that  Hcl admits a local minimum or a local max imum 
at  k = k0. Moreover we will assume that  this extremum is regular which is a generic 
property. More precisely, and without loss of generality we will assume : 

(H0) H = H* E CN(.A1) for N > 2, and all its Fourier coefficients are N-t imes 
differentiable with respect to 3`. 
(H1) Hcl admits a local minimum at k0 = (0,0) and with Hcl(0, 0) = 0. 
(H2) The Hessian D2H~I(0,0) of Hcl at k = (0, 0) is a positive definite 2 • 2 matrix.  

Our goal is to describe the spectrum of r/~(H) near the energies E close to Hcl(0, 0) ---- 0 
for 3' E I.  To describe the result, let us assume that  H can be written as : 

r/~(H) = ~ h (m;3 ' )W~(m) .  (94) 
m e Z :  

with h(m;  3")* = h ( - m ;  3'). Since H is smooth, one can check that  this series con- 
verges absolutely in norm, so that  this expansion is meaningfull. Let us introduce the 
following function : 

Hsel(k;3') = Z h(m;3')  e~(mlk'+'~2k~) , k E T 2 , 3' E I , (95) 
m E Z  2 
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which coincides with Hr for 7 = 0. Then we get the following result [BehEva, BaBeF1] 

T h e o r e m  9 Let H satisfy (HO), (H1)gJ(H2), and let Hscl be defined by (95). Then 
there are 6 > 0 and 0 < ~ <_ ~o such that if [3`1 <- ~, the set S p ( ~ ( H ) )  N ( -6 ,  +6) is 
contained in the union over n E N of the intervals J.(3`) = [E.(3`) - A(3`), E.(3`) + 
A(3`)] where E~(3`) admits a Taylor expansion in 7 up to the N th order of the form : 

En(3`) ]3̀ 1 (n  + 1)(detD2Hr (0"~r + ' ' "  + O("/N) , (96) 
---- + 3 ` \  03` ]7=o,k= 0 

0 < A(3' ) _< const.13`l N' , for some N '  > N . (97) 

To understand more intuitively this result let us introduce a faithfull representation 
~r of .A~ in a Hilbert space in which one can find two selfadjoint operators  K1, /s 
such tha t  [K2, K1] = isgn(3`), where sgn(x) denotes the sign of the real number  x. 
Tha t  such a representation exists is a well known fact [BaBeF1], and is a consequence 
of the Weyl theorem on the canonical commutat ion relations. In this representation, 
one has : 

7r(U) = e iI'ylI/~N1 , 7r(Y) = e iN1/'K2 , (98) 

Therefore we get from (94) : 

M r = 7r o r/~(H) = ~ h(m; 3`)e q~l(m~Kl+'~2K~) , 3, e I .  (99) 
mEZ 2 

Let us expand this expression formally in powers of 13 ]̀ 1/2 to obtain : 

1 
H7 = 3`oqTHscl(0; 0) + ~I3`[O.O.H~,(O,O)K.K~ + 0 (13`13/2) , (100) 

where we have used the Einstein convention on the repeated indices (here #, v E 
{1,2}). By a uni tary transformation, the quadratic term can be t ransformed into 
w(K~ + 1s where w is the determinant of the Hessian matr ix  OuOvHscl(O , 0).  W e  

recognize  here the Hamiltonian of a harmonic oscillator. Actually, if we choose the 
representation corresponding to a 2D free electron in a uniform magnetic field, namely 
the Hilbert  space is L2(R2), and Ku = eonst .(P,  - eA,)  for some physical constant,  
then this Hamiltonian is the Landau one, namely the Hamiltonian describing a free 
electron in a uniform magnetic field. For this reason, the energy levels E,~ are called 
the "Landau  levels" and are equal to that  order in 3  ̀ to w(n + 1/2), leading to the 
expression (96). 

The  proof  of this theorem can be found in [BaBeF1, BehEva]. The calculation of 
E,~ to the next order has been done in [RaBe:Alg], in the case for which O~H = O, 
and leads to (for 3,' > 0) : 

En = 3`w(2n + 1)/2 + 3`2A2Hc,(0 ) (1 + (2n + 1) 2) /64 

. . . .  3`2 [9(3n 2 + 3n + 1)16Hc,(0)l 2 + (3n 2 + 3n + 2)103Hc~(0)12]/288w + 0(3` 3) , 

(101) 
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where : 
cO .cO CO .co 

co - -  c o k I  ? ~ 2  ' ~ = ~ + Z8-~2 ' A = C05. (102) 

These formulm have been checked numerically on several models. The calculation 
to the third order in powers of V havsbeen computed for the Harper model (see (88)) 
[RaBe:Alg] and gives for the minimum (Fig. 1) : 

V2 [1 + (2n + 1) 2] ~/~ In 3 + (n + 1) 3] + O(0/4) (103) E .  = - 4  +  (2n + 1) - + . 

Another example of interest has been investigated in [BeKrSe] and concerns the near- 
est neighbour model on a triangular lattice with two fluxes (Fig. 2). The correspond- 
ing Hamiltonian is given by : 

H~ = 7'1 + T2 + T3 + T~* + T2* + T~ , with TIT2T3 -- e ~2~r162176 , (104) 

and (89). Here r represents the flux through the "up" triangles, while r162  represents 
the flux through the "down" triangles. The corresponding classical counterpart  is 
given by : 

V H+,,r = 2 cos kl + 2cos k2 + 2 cos(kl 4- ks 4- ~ - ~/) , (105) 

if we set 7 + = 27rr162 The minima and maxima occur at the points kl = ks = 
21ra/3+V'/3 -- 0o, where ~ = - 1 , 0 ,  + 1. If 0, ~ 7r/2, one gets the following expression 
[BeKrSe] : 

E~,~ = 6 cos 0~ - 7vf3(2n + 1) cos 0~ + 7 sin 0~ + 72 [1 + (2n + 1) 2] cos 0~/8+ 

�9 .. + ~/2sin20~cosO~[3(2n + 1) + 5]/72 - V2/12 cos 0~ - V2x/~sin 0~(2n + 1)/6 , 
(106) 

giving rise to three bundles of Landau levels. For V p ~ 0 two of these bundles are 
very close and actually intersect each other (Fig. 3) . The comparison between this 
formula and the exact spectrum obtained by matrix diagonalization is very good : 
they agree up to four digits for the coefficients of the power expansion in V [BeKrSe]. 

The assumptions (H0, HI, H2) concern the generic case, for which the extremum 
is regular. However, some non generic case has been observed. For example, in 
[Wil:Cri, BaKr], the case of a square lattice with second nearest neighbour has been 
studied. The corresponding Hamiltonian is : 

HWBK = TI + T; + T2 + T~ + t2 (T214- T?" + T~ + T~ *) . (107) 

For t2 < 1/4, the classical Hamiltonian has only one absolute minimum, like in the 
Harper case. At the value t2 = 1/4, this minimum bifurcates to give four degenerate 
minima for e > 1/4. At the bifurcation value, this minimum becomes fiat namely the 
Hessian actually vanishes identically, giving rise to a normal form like : 

72 
HWBK,~ = --3 + -~- (K~ + K~) + 0(74) �9 (108) 

A Bohr-Sommerfeld quantization condition gives at the lowest order in 7 : 

727r . 
En = - 3  + 4F(1/4)4 (2n + 1) 2 + O(V 4) for n large , (109) 

giving parabolic Landau levels, as can be observed in (Fig. 4). 
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5.3 E x p a n s i o n  near  a ra t iona l  f ield 

The method outlined in the previous subsection for a low field expansion of the spec- 
trum, can be extended to the expansion near a rational field, or also to the case of a 
matrix Hamiltonian, as can happen if several different bands contribute to the con- 
duction. We will give here the method for the rational fields, leaving to the reader 
the case of a matrix Hamiltonian as an exercise. 

We consider now an interval I = [2rp/q - ~o, 27r + r and H = H* �9 .AI. 
Using the matrices u, v given in section 4 (84), letting Uz, V~ be the generators of the 
algebra .A z for 17] <- e0, we consider the elements U', V ~ in A~ | Mq defined by : 

U' = U~ | u , v '  = V~ | v . 

They are unitary and satisfy the commutation rule : 

U'V' = e~('~+2~v/q)V'U ' , 

(110) 

(111) 

showing that  they generate in A~ | Mq a subalgebra ,-isomorphic to .A~T27rp/q. Let- 
ting 7 vary in I(0) = I-co, +e0], we get a *-isomorphism between .AI and a closed 
subalgebra of .AI(0) | Mq. 

Assuming that  H is smooth enough, one can expand it as : 

l]7+2.p/q(S ) : H7 = ~ h(m;7)W~(m) @ w(m) , 7 C I(0) , (112) 
m E Z  2 

and this series converges in norm. So we are left with the same problem as in 5.2, 
with now matrix Hamiltonians instead. Following the same scheme, the classical 
counterpart  is the matrix valued function : 

g~cl(k;7) = ~ h(m;7)ei(mlkl+'~k2)w(m) , k �9 W 2 , 7 �9 I(0) . (113) 
m E Z  2 

As we already indicated, we must first diagonalize this matrix at "y = 0, giving q 
real eigenvalues (since H is selfadjoint), el(k), e2(k) , . . . ,  eq(k), and therefore q bands 
B1, B 2 , . . . ,  Bq, namely the set of values of the e~(k)'s as k varies in the 2-torus. Since 
H is selfadjoint, it is always possible to choose the es(k)'s smooth. We will also denote 
by P1 (k), P2 (k ) , . . . ,  Pq(k) the corresponding eigenprojections; they are also smooth 
with respect to k. We will now assume the following : 

(Hq0) H = H* �9 CN(AI) for some N > 2, and all coefficients in the expansion (113) 
are N-t imes continuously differentiable with respect to % 
(Hql) The eigenvalue e~ admits a minimum at k = 0, and e~(0) = 0. Moreover, no 
other eigenvalue of H~r 0) coincides with e~(0) = 0. 
(Hq2) The minimum of ej is regular, namely the Hessian matrix 0,0ve~(0) is positive 
definite. 

Then we get the following result [Bel:Eva, BaBeF1] : 

T h e o r e m  10 Let H satisfy (HqO), (Hql), (Hq2). Then there are 6 > 0 and 0 < ~ < ~o 
such that if ]71 < e, the set Sp(~+2~v/q(H)) n ( -6 ,  +6) contains a subset Es which 
is itself contained in the union over n e N of the interval J~,j(7) = [E~,~(7) - 
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A(7), E~,~(7) + A(3`)] where E~,i(3`) admits a Taylor expansion in 3" up to the N th 
order of the form : 

(OeJ I + 3`Eaw + O(72),  (114) E,~,A3`) = 13'1(~ + 1/2) (det D2ej(O)) 1/2 + 3" \ O~ / ] 7=o,k:O 

where 0 < A(3') < const.13"[N', for some N' > N, where ERw is the "Rammal- 
Wilkinson" term given by the following expression : 

E R w  = - , (115) 

The strategy used to prove this theorem is based upon the so-called "Schur com- 
plement formula". Let H = H* be a selfadjoint operator acting on a Hibert space of 
the form 7-I = 7) @ Q. Let P, Q be the orthogonal projections on each subspace of 
that decomposition and let D be a partial isometry from 7"/to P such that DD* = Iv 
and D*D = P. We define on P the family of operators : 

He~(z) = DHD* + DHQ(zI  - QHQ)- IQHD * , (116) 

whenever z is a complex number which does not belong to the spectrum of QHQ. 
Then it is possible to show that z E Sp(H) - Sp(QHQ) if and only if z E Sp(HefF(z)). 
Moreover E is an eigenvalue of H not in Sp(QHQ) if and only if E is an eigenvalue 
of He~(E). 

We then denote by P -- I - Q the projection I | P~(0) of .AI(0) @ Mq. For 
(k;3') ~ (0,0), it follows that there is a small neighbourhood O of ej(O) such that 
if z E O, z ~ Sp(QHscl(k; 3`)Q). Since the eigenvalue e~(k) is simple for k ~ 0, the 
projector P3(k) is one dimensional for k ~ 0, and therefore there exists a partial 
isometry D : C q ~ C such that /)/)* = I, and D*/) = Pj(O). If D is the partial 
isometry I |  let us introduce the effective Hamiltonian : 

hi(z) = DtI~D* + DH.~Q (zI - QH.~Q)-' QH.yD* . (117) 

By construction this is an analytic family of elements in AI(0) now. We can therefore 
analyze it by the method developed in 5.2, and will give rise to a bundle of Landau 
sublevels En,j(z) near the lower edge of the band Bj. The corresponding part of the 
spectrum of H~ near e3(0) = 0, will then be given by solving the implicit equation 
E = E,~j(E). The solution can be computed explicitely order by order in powers of 
3 ,̀ thanks to the hypothesis made on e~. The Rammal-Wilkinson term comes from 
the first order contribution of the second term in (117). It reflects the fact that the 
matrices H~cl(k; 3`) do not mutually commute for various values of k in general, namely 
it reflects the existence of a curvature in the fiber bundle over the 2-torus defined by 
Pj(k). The calculation of this term can be found in [RaBe:Alg, BeKrSe]. 

5.4 Qualitative analysis of the spectrum 

Let us now comment on the formulae (114)&(115). Due to the absolute value of 3' 
appearing in the first term of (114), the right and left derivatives of the band edge 
with respect to 3  ̀are different, showing that the band edges eventhough continuous 
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functions of 7 by the theorem 3, have nevertheless a discontinuous first derivative at 
each rational point. On the other hand, even if O~H = 0 the Rammal-Wilkinson term 
may not vanish. This is the case for instance in the Harper model for p/q = 1/3 (see 
Fig. 1). We can see the effect of this term by the fact that  the left and right derivative 
of the band edge are not symmetric around 7 = 27rp/q. The difference between them 
reveals the occurrence of curvature effects. 

On the other hand one can recognize whether the band edge is a maximum or a 
mini at the slope of the Landau sublevels emerging away from 7 = 27rp/q. 

For most values of p/q, all bands are separated by gaps. However, many non 
generic situation can be observed on examples. 
(i) Two bands may overlap without touching each other. Then, each minimum or each 
maximum of the corresponding band will reveal itself by the occurence of a bundle 
of Landau levels emerging on both sides of 7 = 27rp/q (see Fig. 5), and given by the 
formula (114)&(115). 
(ii) two bands Bj, By, with or without overlap, may touch each other. In this case, 
generically they will touch on a conical point (see Fig. 6). This situation leads to a 
different canonical form. For indeed the previous analysis can be extended by replacing 
the projector Pj(0) by P~(0) + Pj,(0). Then the effective Hamiltonian becomes a 2 x 2 
matrix unitarily equivalent to the Dirac operator [HeSj:Har2, RaBe:Alg] : 

I ~ HDirac = 17[ 1/2 g l  - -  iK2 0 + 0(7)  . (118) 

This case will give "Dirac levels" which are parabolic namely : 

E ~  = +const.lnT] 1/2 , n G N , (119) 

which is for instance what happens in the Harper model at E = 0 and p/q = 1/2 (see 
Fig. 1). 

This formula must usually be corrected by a P~mmal-Wilkinson term, giving a 
slope to the sublevel n -- 0. This is what happens in the WBK-model  (108), at 
p/q = 1/2 (see Fig. 7). 
(iii) Two bands can also touch with a contact of order 2. There is another example 
proposed by M.Wilkinson [Wil:Cri] and studied in details by Barelli and Fleckinger 
[BaF1], which is the following : 

Hw : T1 + T2 + t3 (T21T2e -{~ + T[2T2e {~ + TiT~e -i~ + T,T;2e {') + b.c . .  (120) 

At E = O,p/q = 1/2, we do get two families of Landau sublevels on either side of 
p/q = 1/2, corresponding to the bot tom wells of the two bands. The generic parabolic 
touching can be seen on Fig. 8. 
(iv) A maximum or a minimum can also be reached on a curve. This has been 
observed in the W BK model at p/q = 1/2. This case has been investigated in details 
by Helffer and SjSstrand [HeSj:Har3], who remarked that  the "subprincipal symbol" 
may break this degeneracy and create what they have called "miniwells", namely local 
extremas with deepness of order 0(7) .  Such an example has never been investigated 
numerically, but there are indications that such a phenomenon should occur on the 
W B K  model. 
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At last we must point out the occurrence of tunneling effect. For indeed, the classical 
model gives a Hamiltonian on the phase space given by a 2-torus. This is equivalent to 
choosing R 2 instead, but requiring that the Hamiltonian be periodic in both directions. 
This will be called the "extended picture". In this picture, each local extremum is 
repeated periodically, giving rise to an exact degeneracy. Therefore a tunneling effect 
should occur between the corresponding wells, ending into a broadening of the Landau 
levels or sublevels. The width of this broadening can be computed by the WKB 
method, and will give rise to terms of order O(exp ( -S /3 ` ) )  where S is some constant 
equal to the real part of the tunneling action between two neighbouring wells. 

This effect has been studied in great details in the Harper model by Helffer & 
SjSstrand [HeSj:Harl, HeSj:Har2, HeSj:Har3], and for the corresponding model on a 
honeycomb or triangular lattice by Kerdelhud [Ker]. By evaluating precisely the tun- 
neling matrix representing the effective Hamiltonian restricted to each of the Landau 
sublevel, they could prove that it is again represented by a ttamiltonian with nearest 
neighbour interactions, having the symmetry of the original lattice (e.g. a Harper 
model for a square lattice), with a small correction. Therefore, each Landau sub- 
level is itself decomposed into subbands, and this explain the occurence of the fractal 
structure. 

This tunneling effect has also been exhibited in a spectacular example by Barelli 
& Kreft [BaKr], in the WBK model for t2 > 1/4 and 3  ̀~ 0. As we already said, after 
the bifurcation the unique minimum splits into four degenerate minima surrounding 
one maximum. Since these four wells are very close to each other in each unit cell of 
the extended phase space, compare to the distance between cells, the tunneling effect 
between these four wells within the unit cell is likely to dominate over the other sources 
of tunneling. Each well gives rise to its own bunch of Landau levels, but the splitting 
due to the tunneling will separate them. It turns out that the tunneling action in 
this case is not purely imaginary, so that the Landau levels can be represented by if 
n c N, t2 = 1/2 and i = 1,2,3,4 : 

3 2 E,~,i = E,~(3`) + dE,~,i(3') , E~(3`) = - 3  + 53`( n + 1) + 0(3 ,2) (121) 

where the splitting is given by [BaKr] : 

dEn,i = 3`3e-Im(S2)/~ cos(Re(S4)/43` + 7r/4) + O(e -s ' /~) , (122) 
7r 

where $2 represents the action lAB kldk2 for a path A B  in the complex energy surface 
Ha(k)  = E~(3`) joining two neighbouring wells A and B, while $4 is the tunneling 
action for a closed path in the same energy surface going through the four wells once. 
Moreover, S ~ is some action larger than $2. Even though there are usually many non 
homotopic such paths in this complex energy surface, only the "shortest" ones (in 
terms of the corresponding action integral) do contribute to this order. 

In this formula the width of the splitting is controlled by Im(S2) which gives an 
exponentially small term. But the occurence of a non zero real part produces a nice 
braiding between these four sublevels as can be seen in (Fig. 9). In a recent work, 
Barelli and Fleckinger exhibited a braiding of Dirac sublevels near the half flux ( see 
Fig. 10)[BaF11. 
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6 E l e m e n t a r y  P r o p e r t i e s  o f  t h e  K i c k e d  R o t o r  

6 . 1  T h e  F u r s t e n b e r g  A l g e b r a  

As we have seen the Floquet operator for the kicked rotor cannot be seen as an element 
of the rotation algebra. This is because the kinetic part is not a continuous function 
of U and V. However, we have seen that it defines a *-automorphism of the rotation 
algebra. To deal with that we have two choices. The first is to ignore the Floquet 
operator itself and to stick with its action on the non commutative torus. This is fine 
as long as we are interested only in the evolution of observables. 

However, in many occasions do physicists need to know more on the spectrum of 
the Floquet operator itself, the so-called "quasi-energy" spectrum. One of its most 
important property is the "dynamical localization", a phenomenon similar to the 
Anderson localization in Solid State Physics of disordered metals [FiGrPr]. 

In order to deal with this latter problem, we can simply enlarge our algebra by 
brute force, adding the missing unitary F0 equal to the kinetic energy defined in 
section 1 (12) by : 

Fo = e -~A2 /2"~ . (123) 

As we have seen in section 1 (19) this operator satisfies the following commutation 
rules 

(i) F o V F  o '  =: V (ii) F o U F o  I = U V - l e  - '~/2 . (124) 

As before we will denote by BI the C*-algebra generated by the polynomials in U, V, Fo 
with coefficients in the set of continuous functions of 7 in I. This algebra can be 
rigorously constructed along the line developed in section 2. However one can use 
the general method of C*-algebras, namely the notion of crossed-product [Ped], to 
construct it. 

One can indeed see B1 in two ways : 
(i)-the first one comes from the previous definition, namely F0 acts on the rotation 
algebra Jt i  by mean of the *-automorphism 

~ o ( a )  = F o a ~ o  1 a e A . (125) 

Therefore BI can be seen as the crossed product ,41 • Z of the rotation algebra AI 
by the Z-action defined by ~0. Using Weyl's operators defined in section 2 (32), we 
notice that 

/3o (W(m)) = W(Gm) , m e Z 2 , (126) 

provided G is the element of S L ( 2 ,  R) given by : 

G = [  11 0 ] (127) 
- 1 j " 

(ii)-the second one consists in considering first the subalgebra generated by functions 
in g(I) ,  together with the operators V and F0. This is an abelian C*-algebra isomor- 
phic to g ( I  x T~). This isomorphism associates to V and Fo respectively the functions 
fv(7,  x, y) = e i~ and f F o ( % X , y )  = e% Actually, the inner automorphism associated 
to U leaves this algebra invariant. This is because the commutation rules (19) can be 
written as 

(i) U V U  -1 = e i~V , (i i)  UFo U-1 = e~'Y/2VFo . (128) 
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In other words, for f ~ C(I  • T2), we get : 

U f U  -1 - f o r  (129) 

where r is the "Furstenberg" map acting on I • T 2 as : 

r  = ( % x  + % y  + x + 7 /2 )  , ( % x , y )  E I • W 2 . (130) 

This map  was used by Fhrstenberg to study the ergodic properties of diophantine 
approximations in number theory. Thus/3i  can be seen as the crossed product  C(I  • 
T 2) xr  Z by the Fhrstenberg map. This is why we propose to call this algebra the 
"Furstenberg algebra". 

We see tha t  r leaves each fiber {7} • T2 invariant and we will denote by r the 
corresponding restriction. It is well-known that  whenever 7 /2~ is irrational, r is a 
minimal diffeomorphism [CoFoSi]. 

6 . 2  C a l c u l u s  o n  Bx 

As for Az, a calculus can be defined on the Furstenberg algebra. Since the trace on 
.4i is/3o-invariant, it defines a trace on the crossed product in a natural  way. It is 
actually defined by the formula : 

T (W(m)Fg)  = (~m,0.(~/,0 , m E Z 2 , 1 C Z .  (131) 

Since we have defined originally (cf. section 1) U, V, F0 in term of action-angle variables 
in the classical case, one also gets an angle average (.) namely : 

(W(rn)F0 l) = ~ml,oVm2F~ , i f  m = (ml ,m2)  C Z ~ , 1 E Z .  (132) 

Thus, if a E 131, (a) E C(I  x T2), and this average satisfies the properties described 
in (32). 

In much the same way, a differential structure can be defined. The derivation COo 
can be extended immediately to /3 i  by : 

OoU = i U ,  COoV = 0 ,  00F0 = 0 .  (133) 

We notice however that  COA cannot be extended as a derivation in B/ because COAFo 
would be unbounded, namely outside/3i. But a new derivation COy appears defined by 

COuU = 0 ,  COyV = 0 , COuFo = iFo . (134) 

Both 0o and COy are the infinitesimal generators of the following two-parameter  group 
of *-automorphisms : 

P0,u (W(m)F0 l) ei(ml~ (135) 

which leaves the trace invariant. 
At last, the definition of a Poisson bracket is not obvious because for 3 /=  0 the algebra 
B0 is no longer commutative.  Even though it is in principle possible to define such an 
object,  we will not use it, and we skip this part  of the calculus. 
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6 . 3  R e p r e s e n t a t i o n s  a n d  s t r u c t u r e  o f  B I  

Among the representations of/3I,  we will select one family of special interest in view 
of the original definition of the kicked rotor in the physical Hilbert space L~(T) given 
in section 1. It is actually simpler to work in the momentum space, namely in ~ ( Z )  
where the integers of the chain Z are simply the quantum numbers for the angular 
momentum.  

This family {%,~,u; (7 ,x ,y )  E I • T 2} is indexed by points in I • T 2 and acts on 
g2(Z) as follows : 

( i )  (Tr%x,y(f)r (n) = f(7)r , f C C(I)  
(ii) (r~,x,y(U)r (n) = r  - 1) , 

(iii) (~r~,x,y(V)r (n) = e~(x-n*)r , (136) 

(iv) (Tr.~,x,y(F0)r = e i ( y - n x + n = ' / 2 ) r  , i f  ~b E g2(Z) . 

Comparing with the equation (12) & (13), 7 appears as an effective Planck constant,  
x as an effective magnetic field, and y as a phase factor entering in the definition of 
F0. 
With these definitions, the following result can be easily proved by standard technics 

P r o p o s i t i o n  7 1)-The family {~r~#,y; (7, x ,y)  E I x T 2} is faithfull. In particular, 
the norm of a E/3I is given by : 

]lalI - -  sup sup II=~,~,~(a)ll �9 (137) 
~EI (z ,y)~T 2 

2)-The map (7 ,x ,y )  E I x T 2 ~-+ %,z,y(a) is strongly continuous for all a E BI. 
3)-For ~/ E I ,  the trace is given by : 

r~(a) = fT dxdy 
2 4r <Ol~,x,Aa)lO> (138) 

Moreover if "y/27r is irrational, we get 

�9 1 = 1,m 27- T  L,), 

uniformly in (x ,y)  E T a. 4)-If  T is the translation operator in g2(Z), namely if  
(Tr  = r  - 1) for r E g2(Z), then : 

TTr~,,.y(a)T-' = ~r~(~,~,~)(a), a ~ I3i,  ('r,x,y) e I x T 2 . (139) 

5)-If N is the position operator in s defined by (Nr  = nr  , r E g2(Z), we 
have : 

0 
%,x,y(Oea) = i[N, rr~,~,y(a)] , 7r~#,y(Oya) = ~yr%x,y(a) . (140) 

Thanks  to this result the elements of BI can be described as follows. For a E 131, we 
s e t  : 

a('~, x, y; n )  = (01rr~,~,y(a)ln) . (141) 
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This is a continuous function on I • T 2 • Z converging to zero at  infinity. In terms 
of such functions the product  and the * in BI can be expressed as follows : 

ab(7, x , y ; n )  = y ~ a ( 7 , x , y ; l ) b ( 7 , x  - 17,y - lx  + 127/2;n - l) , (142) 
IEZ 

a* (7, x, y; n) = a(7, x - nT,  y - n x  + n27/2; - n ) *  , (143) 

for a, b E BI. Moreover, the representation 7%,x,y is given by : 

(Try,x,y(a)r (n) = ~ a ( 7 ,  x - n T ,  y - n x + n 2 7 / 2 ; l - n ) r  , r �9 g2(Z) . (144) 
I E Z  

In par t icular ,  due to the faithfullness of this family, a = 0 if and only if the function 
a(7, x, y; n) vanishes identically. 

If we denote by By the algebra Bl for I = {7}, the following theorem characterizes 
i ts s t ructure  : 

T h e o r e m  11 1)- I f  7/2~r is irrational, 13y is simple. In  particular, every non zero 
representat ion is faithfull .  
2)-For 7 = O, the algebra Bo is isomorphic to the universal  rotation algebra A .  
3 ) - I f  7 = 27rp/q where p, q are positive integers pr ime  to each others, B2,p/q is iso- 
morphic  to the sub C*-algebra of Mq(C) | Bo generated by : 

~ ] = u |  l / = v |  F0 = w |  (145) 

where Uy, Vy, Fo,y are the generators of  B~, and u, v, w are three uni tary  q x q matr ices  
fulfil l ing the fol lowing conditions : 

u q = v q = w 2q = I , (146) 

u v u  -1 = e2i'P/qv , u w u  -1 = ei 'P/qvw , v w  = w v  . (147) 

P r o o f  : 1)-For 7/27r irrational,  the Furstenberg map r : (x, y) E T 2 ~-+ (x + 7, Y + 
x + 3'/2) E T 2 is a minimal diffeomorphism of the torus [CoFoSi]. Therefore, the 
crossed product  By = C(T 2) xr  Z is simple [HiSk]. 
2)-For 7 = 0 the  commutat ion  rules become : 

U V  = V U  , V F o  ~- F o V  , UFoU -1 = VFo . (148) 

These rules are precisely the ones defining the universal rota t ion algebra .4 if we 
identify V with the map  3' c T ~-~ e ~y C C (cf. section 2). 
3)-If one chooses the matrices u, v as in (84), the matr ix  w becomes : 

W = 

1 0 0 . . .  
0 A' 0 - . -  

0 0 0 . . .  
0 0 0 . - .  

0 0 
0 0 

~,(q_~)2 0 
0 )r 

(149) 

where ~' = e iTrp/q. 
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It  is easy to check that  U, I), F0 satisfy the commutat ion rules for the algebra 
B2~p/q. Hence they define a *-homomorphism p from B2,p/q into Mq(C) | Bo. 
4)-To achieve our result it is sufficient to prove that  p is one-to-one. For (x, y) C T 2, 
let ~'~,~ be the representation of Mq(C) | Bo given by id | 7ro,~,y acting on C q | g2(Z). 
Any a E Bo can be seen as a function on T 2 x Z as (see (141)), and for r E C q |  
a n d A E M q w e g e t  : 

q-1 

[~'~,~(A | a)r (n) = ~ ~ A3,j,a(x, y - nx;1 - n)r 
j=0 IEZ 

(150) 

q-1 Let {ej}j= o be the canonical basis of C q with the convention that  e~+q = ej, and let 
{Sn; n E Z} be the canonical basis of g2(Z). We set : 

IJ, n) = ej | 5,~ . (151) 

Then : 
(j, 01#,,y(A | a)IJ',  l) =Ajd ,  a(x, y, ;l) . (152) 

It is not difficult to check that  if now b c B2~p/q and r E C q N g2(Z) we get : 

[5,,y (p(b))r (n) = ~ b(x - 2rjp/q,  y - nx + j2~p/q; l)r + l) , (153) 
lEZ 

where j + l is defined modulo q. It is actually sufficient to check this formula on the 
generators Ue~p/q, V2,p/q, Fo,~p/q since #x,y and p are . -homomorphisms.  In particular 

(0, Ol~x,y(p(b) )I l, l) = b(z, y; l ) .  (154) 

Thus p(b) = 0 if and only if b(x, y; l) = 0 for any (x, y; l), namely b = 0. Hence p is 
one-to-one. 

Using the same strategy we can easily get : 

C o r o l l a r y  4 1)-for "7 c R the algebra B2~p/q+~ is isomorphic to the subalgebra of 
Mq @ B 7 generated by u | U~, v | V~, w | Fo,~. 
2)-for "7, 7' C R the algebra B~+~, is isomorphic to the subalgebra of B~ |  z, generated 
by U~ | U~,, V~ | V~,,Fo,~ | Fo,~,. 

6 . 4  A l g e b r a i c  P r o p e r t i e s  o f  t h e  K i c k e d  Rotor  

In section 1 we have expressed the Floquet operator of the kicked rotor as : 

-1  ~ e - i A 2 / 2 7 e - i K c ~ 1 7 6  if1 (155) 

where 7 = l iT / I  is the effective P lan& constant and x = - # B T  is the effective 
magnetic field. Moreover in the momentum space representation, A = "/N - x if N 
is the position operator  (see prop. 7). Using the previous algebraic framework, it 
follows tha t  : 

FK,-r,x = 7r,y,~,o(rK) , (156) 

with : 
F K  eiK(U+U-1)/25Fo , (157) 
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where "~ : 3' E I ~ 3' c R. In this special case we notice the following property : 

~r~,x,~(F~:) - e '~FK,~,~ , (158) 

so that  one can set y = 0 without loss of generality. 
It follows that  FK belongs to/3i for any compact set I in the real line not containing 

the origin. 
Our first set of results concerns the spectrum as a set of this Floquet operator. 

Since it is unitary its spectrum is necessarily contained in the unit circle S~. Actually 
the following results are still valid if we replace cos(O) = (U + U-1)/2 by any real 
valued 27r-periodic continuous function g(O) on the real line. 

T h e o r e m  12 1)-For any 3" ~ O, the spectrum of FK,7 = ~ ( F K )  is the full circle. 
2)-If 3"/27r is irrational, the spectrum of FK,~,~ is the full circle for any x e T.  
3)-If "y/2~ is rational, but x/2~r is irrational, the spectrum of FK,~,~ is the full circle. 
4)-If 3"/2~r and x/2~r are rational, FK,~,~ admits a band spectrum. 

P r o o f  : 1)-Since the family {n~,~,~; (x, y) e T 2} of representations of/3~ is faithfull, 
we get : 

SPB,(FK,~t) = U(x,y)Ew2eiUSp( FK,.~,x ) �9 (159) 

Taking the union over y clearly gives the full circle. 
2)-If 7/27r is irrational, B~ is simple. Thus each of the ~r~,~,y's is faithfull, in particular 

S1 = SpB~(Fg,~ ) = Sp(FK,~,~) , Vx ~ T ~ . (160) 

3)-If 3' = 2top~q, the covarianee condition (145) gives : 

T " % , ~ , ~ ( F u ) T - " q  = ~ , ~ , ~ + . ~ x ( F K )  , n C Z 

In part icular  

(161) 

Sp (Tr~,z,y(FK)) = Sp (Tr~,~,u+~(FK)) , Vn e Z .  (162) 

If in addition x/2~r is irrational, given any y' E T we can find a sequence (nl) of 
integers such that  yP - y = liml~r nlqx mod 27r. By the strong continuity of ~r~,~,y 
with respect to y, it follows that  : 

Sp (Tr~,,,r C Sp (Tr~,x,y(Fg)) . (163) 

Since y, y~ are arbitrary, the same result holds after exchanging them. In particular 
for any y we have : 

Sp (Tr~,~,u(Ft()) = e~YSp (n~,~,o(Fg)) = Sp (7c~,x,o(Fg)) , (164) 

showing the result. 
4)-If 3' = 2rp/q and x = 2rr/s ,  the covariance property shows that rc~,x,o(Fg) is 
periodic. By the Bloch theorem we get a band spectrum. Actually one can easily see, 
using the corollary 4 that  the algebra 7r~,x,0(/3x) is isomorphic to the subalgbera of 
Mq | Ms | r  generated by u | u' | eik, v | e ~ | 1, w | v ~ | 1 where u, v, w (resp. 
u ~, v ~) are the q x q matrices (resp. s x s) defined in the theorem 12, and k is the 
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quasimomentum. Here we used the fact that r%,~,O(FK) Q = I if Q = 2(q v s). This 
gives the band spectrum by diagonalizing the finite dimensional matrices and varying 
k. 

The next set of results concerns the density of states. Let A be an interval in 
the unit circle, namely the image by w ~-+ e i~ of an interval of the real line. Let 
us also call gi  the restriction to the finite set [ -L,  L] of g(O). This is a self adjoint 
matrix of dimension 2L + 1. Let also ~(L) be the restriction of F0,~,x to the same 0,"/,x 
interval. Because it is diagonal it is a unitary (2L + 1) x (2L + 1) matrix. Then we set 
FK(L) 1:2(L) piKgL(O)/"/ Again, this is a unitary matrix of dimension 2L + 1. Let then ,'y,x = "tO,~',xv 

nn(A) be the number of eigenvalues of this matrix contained in A. As L ~-~ c~, this 
number increases like O(L), so that we can define the Integrated Density of States 
(IDS) as the following limit, if it exists : 

n L ( A )  

' '  2 L + l  
(165) 

The first important property is the "Shubin formula" [Bel:Gap] 

P r o p o s i t i o n  8 If'y/2~r is irrational, the limit defining the IDS exists uniformly with 
respect to (x, y) E T 2 and is independent of (x,y). Moreover it is equal to : 

Aft(A) = % (x~(FK)) , (Shubin's Formula) . (166) 

where Xzx is the characteristic function of the interval A.  

The proof of this proposition can be found in [Bel:Kth, Bel:Gap, BeBoGh] for self 
adjoint operators. It can be easily adapt for the Floquet operator. We notice that the 
limit is reached uniformly with respect to (x, y). This is because the Furstenberg map 
is minimal and not only ergodic. Another remark is that the eigenprojection xA(FK) 
does not belong in general to the algebra B~. However, it belongs to the von Neu- 
mann algebra Lcc(Bz, %), namely the weak closure of B~ in the CNS representation 
associated to the trace. Thus the Shubin formula is meaningfull. 

Thanks to the Shubin formula, the IDS can be written as : 

Aft(A) = f a  dAft(E) , (167) 

where dA/'. r is a probability measure on the torus T (which we identify with the unit 
circle) called the Density of States (DOS). We can actually compute the DOS namely 

P r o p o s i t i o n  9 I f  "y/27r is irrational, for any continuous real valued 2rr-periodic func- 
tion g on the real line, the DOS of the kicked rotor is equal to the normalized Lebesgue 
measure on the torus, namely : 

dE 
KAf~(E)-- 27r (168) 
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P r o o f  : The Shubin formula implies that  the DOS is the unique probabili ty measure 
on the torus such that  : 

fw d'N"Y(E)ei'~E = T7 (F~) , n E Z .  (169) 

We claim tha t  T7 (F~) = 0 unless n = 0 which will prove the result. For indeed, the 
trace is invariant by the,automorphism group/~0,k. On the other hand, we have : 

~o,k (FK) = e~kFK. (170) 

It follows tha t  ~3o,k (F~) = e"~kF~ showing that  

T~ (F~) (e '"k - 1) = 0 .  (171) 

Our last result concerns the algebraic way of writing the kinetic energy. In order 
to s tudy numerically the spectral properties of the kicked rotor, several physicists 
[CaChIzFo] have iatroduced the averaged kinetic energy. Giving an initial s tate r c 
t?2(Z), it is given by (see (9) & (11)) : 

L 2 
s = (r162 , t e Z ,  (172) 

where L is the angular momentum,  I is the moment of inertia and F the Floquet oper- 
ator. Thanks to the definition of the position operator N (see Prop.7) and introducing 
the period T of the kicks, one can write it as : 

gc(t) = 2~(r162 . (173) 

In order to keep only dimensionless quantities, we will redefine this kinetic energy by 
forgetting the prefactor I /2T  2. Moreover physicists usually choose an initial state lo- 
calized on one value of the initial angular momentum. Using the covariance condition, 
it is always possible to choose r = 10) by changing the value of (x, y) if necessary. 
This why we will rather  define the mean kinetic energy in the following way : 

s = 72 (01F~ ~, ,xN2F~ t, ,xlO) . (174) 

We notice that  varying y will not change this definition. Using now (146),  it follows 
immediately that  if IAI 2 = AA* : 

C~,~(t) = 72(01~r~,~,u(10oFk,~,~1210) . (175) 

The choice of the initial value of the angular momentum being arbitrary, we may 
average over the position of the initial state in momentum space, in order to get the 
generic properties of the system. This is equivalent to averaging over (x, y), namely 
to taking the trace. This why we will also consider the quantity : 

C~(t) = 7%~ (1OoFk,~,J 2) �9 (176) 
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7 Local izat ion and Dynamica l  Local izat ion 

7 .1  A n d e r s o n ' s  Local izat ion 

The localization phenomena was predicted in 1958 by Anderson [And] for conduction 
electrons in a disordered metal. The main idea underlying this effect is that the 
electronic wave in an infinite medium is reflected by the obstacles (ions, defects,etc,...). 
If the medium is a perfect crystal, the total reflection coefficient may not be equal to 
one due to constructive interference effects and allows the wave to travel freely towards 
the boundary. This happens whenever a Bragg condition is fulfilled, for special values 
of the total energy of the traveling particle, defining a band spectrum. This is the 
essence of Bloch theory for perfect metals. In such a case, the conductivity is infinite, 
if one neglects the influence of phonons and of the electron-electron interaction. If the 
medium is not periodic but quasiperiodic, such as quasicrystals, one may have also 
free Bloch waves if the quasiperiodic potential describing the influence of the ions on 
the travelling particle is not too strong [DiSi, BeLiTe, ChDe, BeIoScTe, BenSir]. 

However, in a disordered medium, the Bragg condition is unlikely, namely de- 
structive interferences may force the electronic wave to vanish at infinity. Thus, the 
electonic wave is trapped in defects : in other words it is localized in a bounded re- 
gion. Anderson proposed a tight binding model of such medium and could predict 
that 1-dimensional disordered chains always exhibit localization [Pas, Cyc]. Later on 
[AbAnLiRa] it was argued that in 2D the same effect occurs. But in higher dimen- 
sion, localization holds only for strong disorder or at the band edges [FrSp, FrMaScSp]. 
Then if the disorder is not too strong, Ohm's law holds, leading to a finite conductivity, 
even if we ignore the phonons and the electron-electron interaction. 

The Anderson model is extremely simple but contains most of the properties nec- 
essary to describe such a medium. In a tight binding representation, the electronic 
states can be represented as elements of the Hilbert space g2(zD), if the crystal we 
start from is the D-dimensional lattice Z D. If there is no disorder, in the one elec- 
tron approximation, the conduction electrons are approximately described by the free 
Laplacean •D namely if r ~ ~2(zD) : 

A~r ~ r (177) 
In-,~q-1 

where t is the "hopping" parameter which measures the energy required for an electron 
to hop from one site to the next one. The energy spectrum is then given by the band 
[-2Dt,  2Dt]. 

Adding one defect in the crystal can be described by adding to the previous 
Laplacean a local potential in the form of a sequence Vd~f~ct = (Vd~/~ct(n); n C zD), 
as was shown in 1949 by Slater. To get a homogeneous distribution of defects it is 
therefore sufficient to replace Vd~I~r by a homogeneous sequence V. To take into 
account the randomness of the defect distribution we will assume that the values 
V(n) of this potential at each site are identically distributed random variables. Even 
though we expect some correlation between them in realistic systems, at least at short 
distances, Anderson proposed to consider the simplest case for which they are inde- 
pendent and uniformly distributed in an interval [-W, W 1. Then W is a measure of 
the disorder strength. Let s be the corresponding probability space (in this exam- 
ple, 9t = I -W, W] zD) and let P be the corresponding probability measure (in this 
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example, P = (~,~ez D d V ( n ) / 2 W ) .  The potential becomes a function of the random 
variable ca E f t  so that the Anderson Hamiltonian can be written as : 

H~ = / %  + w~. (178) 

The probability space (f~, P) can be seen as the configuration space for the disorder. 
The translation invariance of the original lattice is not completely lost. For indeed, 
translating this new system is equivalent to translate the distribution of defects back. 
More precisely, there is a measure preserving action of the translation group on f~. 
For the Anderson model this action is given by Trcan = ca,~-r. If we denote by T ( r )  
the translation by r c Z D in the Hilbert space, namely for r c t~(zD), T ( r ) r  = 

r  r), we get the following "covariance condition": 

T ( r ) H ~ T ( r )  -1 = HTr~ . (179) 

We will complete this framework by adding two conditions. The first one is the 
ergodicity of the probability measure P. Thanks to Birkhoff's ergodic theorem, it 
expresses the fact that space averages coincide with P-average. In this way, P can 
be constructed in practice simply by taking space averages, an unambiguous process. 
The second one concerns the existence of a topology on f~ which makes it a compact 
Hausdorff space, and such that the P-measurable sets are generated as a a-algebra 
by the Borel sets, namely P is a Radon measure. In the Anderson model the product 
topology will do it. Actually an intrinsic definition of homogeneous system has been 
proposed in [BehKth, Bet:Gapl leading to the definition of a canonical topology on 
the disorder configuration space. For this topoloKy, the mapping w E f t  ~ H~ is 
strongly continuous (in the resolvent sense whenever H~ is unbounded self adjoint). 

To summarize, homogeneous media, such as crystals, quasicrystals, glasses, amor- 
phous, aperiodic or disordered systems, may be mathematically described by the 
following axioms. 

(D1)-The disorder configuration space is a compact Hausdorff topological space ~t 
endowed with a probability Radon measure P 
(D2)-Tbe translation group is a locally compact abelian group G acting in ft by mean 
of a continuous group of homeomorphisms ca ~ gca. The probability P is G-invariant 
and ergodic. 
(D3)-The quantum state space is a separable Hilbert space 7-i in which G acts through 
a projective unitary representation {T(g); g c G}. 
(D4)-The Hamiltonian is a strong-resolvent continuous family H = {H~; ca ~ ft} of 
self adjoint operators acting on ~ with a common G-invariant domain Z). 
(D5)-A covariance condition is satisfied, namely: 

T ( g ) H , , T ( g ) - '  = Hg~ . (180) 

In general we will prefer a projective unitary representation. For indeed there are 
concrete examples for which the translation group does not act as a true representa- 
tion. This is the case for a crystal in a uniform magnetic field [Bel:Gap]. We have 
restricted ourself to abelian translation groups because no concrete useful example 
have been studied till now with non abelian groups. However, systems living on a 
Cayley tree admits a non abelian translation group which is usually a free group. We 
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can also include in G other symmetries like rotations, reflections, if necessary. This 
has never been investigated in detail yet, even though we believe that it should be 
useful: classification of defects in crystal may be related to such groups. 

The smallest observable algebra that can be of interest for physics, is the one 
constructed with the energy. In more concrete systems however, other observables 
like spins, may be relevant. For simplicity, we will consider the simplest case for 
which the only relevant observable is the energy. In a homogeneous medium, the 
choice of the origin is arbitrary, since the systems reproduces itself under translation. 
So that the physics of the system is described by any of the elements of the family 
H = {H~o; w C l-l} representing the energy. In order to avoid choosing arbitrarily one 
of them, we will include all of them. We then define a non commutative C*-algebra 
C*(H) as the smallest one in the space of bounded operators onT-/ containing the 
resolvent of each of the elements of H. In general, we do not know the structure of 
such an algebra. However for most concrete examples construct till now, namely by 
using the Schr5dinger operator for one electron systems [BehKth, Bel:Gap], like the 
Anderson model, this algebra is nothing but the crossed product g(ft) x G defined by 
the topological dynamical system (fl, G) describing the disorder configurations in the 
original medium. This algebra must be slightly modified if a uniform magnetic field 
is turned on. We will ignore this latter case here. 

Thanks to this framework, there is a very close analogy with aperiodic media in 
Solid State Physics and the dynamics of a kicked rotor. Even though the physical 
interpretation is very different, the C*-algebra used to describe the observables is also 
a crossed product. However, in the kicked rotor model, the lattice G is the quantized 
momentum space instead, and the space ~t admits a fairly different interpretation 
since the variable -y plays the role of an effective Planck constant and is related to the 
period of the kicks, x plays the role of a magnetic field, whereas y represents a generic 
translation in momentum space. We also notice that the ergodicity of the measure 
holds only if 7/2~r is a fixed irrational number. 

There is also a very close analogy with 2D-dimensional lattice electrons in a uni- 
form magnetic field. We have already seen that the observable algebra is the ro- 
tation algebra AI which can also be seen as the crossed product g(I • T) •162 Z if 
r : (% x) E I • T ~-* (% x + ~') E I • T. Then 7 plays the role of a dimensionless 
magnetic flux per plaquette, whereas x is a generic position of the origin in the x- 
direction of the lattice. Again, the ergodicity of the measure on gt = I • T holds only 
if I = {-y} where V/2~r is a fixed irrational. 

The main question now is whether this formal analogy between so different prob- 
lems will produce phenomena similar to Anderson's localization. The common belief 
is that if H is a selfadjoint operator belonging to this algebra, with short range in- 
teractions, namely if it is smooth enough with respect to the differential structure 
that will be described in the next subsection, it will exhibit such phenomena at least 
if the dynamical system (~, G) is "sufficiently aperiodic". The precise meaning of 
"sufficiently aperiodic" is not completely understood yet. Several numerical studies 
have investigate this question, but they are far from having given a precise criterion 
yet [FiHuXX]. More precisely we define a 2-point function by C(g) = {FFg) - (F} ~, 
where F is a continuous function on ~t and Fg(w) = F(g-lw) while (.) is the ergodic 
average. If any 2-point function converges to zero fast enough as g ~ oo, the local- 
ization is expected to occur. This is certainly not the case for a periodic or an almost 
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periodic dynamics, describing for instance a perfect crystal with or whithout a uniform 
magnetic field. And indeed we do not expect in this case localization to occur. Still, 
a 1D model like the Almost Mathieu Hamiltonian [AuAn, ChDe, BeLiTe], has been 
proved to exhibit a metal-insulator transition at large coupling. But the Furstenberg 
map for instance, which satisfies this criterion, should give rise to localization. This is 
the basis of an argument by Fishman, Grempel and Prange [FiGrPr] predicting that 
localization occurs in the kicked rotor problem. 

The next problem therefore is to describe mathematically w!lat we expect to char- 
acterize the localization. One of the first criterion used by Anderson was connected 
to the time evolution of quantum states : if the time-average of the probability for 
the initial state to come back after time t is positive, then localization do occur. We 
will see later on, thanks to an early result of Pastur [Pas] that this criterion is related 
to the existence of a point spectrum for H~, P-almost surely. This is essentially why 
mathematicians describe localization in term of the existence of a point spectrum. It 
is related to the finiteness of the so called "inverse participation ratio" (see below). 
Another way consists in defining the localization length: roughly speaking it gives a 
measure of the diameter of the region where a typical eigenstate is localized. 

One of the main problems in dealing with the spectral property of the Hamiltonian, 
is that in many situations, this requires the choice of a fixed representation of the 
observable algebra. While in the Anderson model, this choice is quite natural, thanks 
to the description of the original disorders medium, in other models for which we 
would like to use the localization theory, it is not necessarily so. Two inequivalent 
representations of the same algebra may give different type of spectral measure for 
the same Hamiltonian. This happens for instance in the problem of Bloch electrons 
in a magnetic field. Therefore if this latter point of view were correct, localization 
would require to distinguish physically between different representations. However, 
the computation of the localization length requires a space average, in order to get 
a quantity insensitive to the specific configuration of the disorder, and therefore as 
we will see, it can be interpreted in a purely algebraic way. There is therefore an 
apparent contradiction between the two points of view. This is actually nothing 
but the usual opposition between the SchrSdinger and Heisenberg point of view in 
Quantum Mechanics. Our main purpose in this section is to show how to reconcile 
them, and to show that in some sense they are equivalent. 

Our last comment concerns the semiclassical limit. While this limit is meaningless 
in the Anderson problem, since the starting point is the band theory for perfect 
crystals, a fairly strong quantum theory, the kicked rotor problem gives a nice example 
where the semiclassical limit exists indeed together with a localization effect. It is 
therefore natural to consider what happens to the localization phenomena in this limit. 
The main discovery of Chirikov, Izrailev and Shepelyansky [ChIzSh] was to relate this 
limit to the diffusion constant in phase space of the classical kicked rotor. Even though 
this relation has not been proved to hold rigorously, many numerical studies show that 
it is probably correct at least under some unknown "generic condition". Therefore 
we have reached here one point of the so-called "quantum chaos". We will give only 
some pieces of this puzzle here. 
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7 . 2  T h e  O b s e r v a b l e  A l g e b r a  

To avoid useless technical difficulties, we consider now the C*-algebra C(f~) x G where 
G = ZD.D will be called the dimension of the lattice. However, most of what will be 
described here can be extended to more general groups such a s  R D for instance. As 
for the rotation or the Furstenberg algebra, we can develop a calculus as follows. 

Elements of C(f~) x Z D are continuous complex functions a ( w , n )  on the space 
f~ x Z D vanishing at infinity. To define this algebra properly, it is more convenient to 
start with the dense sUbalgebra G(f~ x Z D) of continuous functions on f~ x Z D with 
compact support, endowed with the following operations: 

ab(~; n) = ~ a(~; l )b(T-Iw; n - l) , (181) 
IEZ D 

a*(w; n) = a(T-~w;  - n )  . (182) 

Since the functions a and b have compact support, the sum above is finite. Remarkable 
elements are given by : 

I (w;n)  = 5~,0 , U(r ) (w;n )  = 5n,-r , r C Z D . (183) 

The first one I is a unit, whereas U(r)  is a group of unitaries namely U ( r ) U ( r ' )  = 
U(r  + r ') ,  U(0) = I and U(r)* = U ( - r )  = V(r )  -1. 

A family of representations in the Hilberts space &(Z D) indexed by w E f~ is given 
by: 

7rw(a)r = ~ a(T-'~w; n' - n)r  , a E Cc(~~ X Z D) , /~ E g 2 ( z D )  �9 
n I EZ D 

(184) 
In particular we get a(w; n) = (0brw(a)in). Then a C*-norm is defined by: 

I[all = sup II~rw(a)l[ , a e G(f~ x z D) . (185) 
wef t  

Then C(f~) x T Z D is the completion of Cc(f~ x Z D) under this norm. To shorten the 
notations we will denote it by .4. 

Given an invariant probability measure P on f~, a normalized trace wp (or T for 
short whenever no confusion arises) is defined by: 

v(a)  = In  dPa(w; O) , a c . 4 .  (186) 

It is easy to see, by using the Birkhoff ergodic theorem, that  if P is ergodic, 

1 
r(a)  = lira TrA 0rw(a)) for P - almost all w . (187) 

ATZ D ] - ~  

At last, the differential structure is related to the group action and defined as follows. 
If n = (n l , . . .  , no)  E Z D, we define the *-derivation c9, by: 

a,a(w; n) = i n ,  a(~; n) , # = 1 , . . . ,  D . (188) 
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These derivations commute together and are the infinitesimal generators of the D- 
parameter group of automorphism {po; 01T D } (the so-called dual action of Takasaki 
[Ped]) defined by: 

po(a)(w; n) = e'~ n) , On = Olnl + . . .  + ODnD �9 (189) 

Moreover, denoting by N,  the position operators defined by N , r  = hue(n) in 
g2(zD), we get: 

7c,,(O~,a) - i[N~,, 7r~(a)] . (190) 

7 . 3  L o c a l i z a t i o n  C r i t e r i a  

In this subsection we give several criteria for the localization and discuss the relation 
between its finiteness and the nature of the spectrum. We will consider a self adjoint 
element H = H* in the algebra A = C(9t) • zD previously described. In view of the 
study of a Floquet operator we may consider a unitary element F = (F*) -1 of this 
algebra instead. This latter case reduces to the former provided we identify F with 
e iTH for some T > 0 and the Borel sets A are subset of the unit circle. In the physical 
representation 7r~ we consider the operator 7r~(H) = H~ instead. 

If A is some Borel subset of R we denote by PA t eigenprojection of H corre- 
sponding to energies in A namely : 

PA = Xzx(H) , (191) 

where X~ is the characteristic function of the interval A. Again, we notice that 
in general P/, may not belong to A. However it always belongs to the so-called 
Borel algebra B ( A )  [Fed], formally generated by Borel functions of elements of A. 
The Borel functional calculus permits to extend any representation of .4 to its Borel 
algebra. Hence the previous definition makes sense. The price we pay for it is that 
the mapping w E ~t ~-~ Try(a) may not necessarily be strongly continuous any more, 
but it is always strongly borelian if a E B(A) .  

If H~ has a pure point spectrum in A we get the following decomposition: 

7r~(Pa) = ~ HE(w), (192) 
EEA 

where HE(W) is the eigenprojection of H~ corresponding to the eigenvalue E. If E 
is a simple eigenvalue, one gets He(w) = [r162 where eE,~ is a normalized 
eigenstate namely: 

HeE,~][ 2 = ~ IeE,~(n)[ ~ 1 < +C~. (193) 
n E Z  D 

The first quantity measuring the localization is the probability of staying at the 
origin. It was introduced by [And] and studied by Pastur [Pas]. To define it let us 
first consider the time-average A,~,~, (A, w) of the probability for an initial state at n 
to be localized at n t after time t: 

A,,n,(A,w) = lira f T dt [(n[Tc~(eitr4 PA)In')]2 
T~---,(~ JO T- 

(194) 
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If H~ has a pure point spectrum, the decomposition (192) leads to : 

A . , n , ( A , w )  = ~ [(nlIIE(W)ln')l ~ . (195) 
EEA 

The covariance condition implies A~,n, (A, w) = A0,,,_~(A, T-~w), so that the staying 
probability is entirely given by the function A0,0(A,w), provided we consider it as 
a function of the disorder. We remark that if the eigenvalues are simple, since the 
eigenstates are normalized we get: 

Ao,o(A,w ) = EEe~ICE,~(O)I 4 (196) 
( E ~  1r 2 ' 

namely A0,0(A, w) is the mean inverse participation ratio for energies in A. To get a 
quantity insensitive to the disorder, let us average it with respect to P defining the 
averaged inverse participation ratio : 

~A = fn dP A0,o(A, w) . (197) 

Using now the automorphism group defined in eq.(189) and the eq.(184,186), an 
elcmentary calculation leads to the following expression for {~: 

~a = lim[T dt dDO -T fT~ ~-(e"n PApo(e-"n P~)) . 
r ~  Jo (2~) ~ 

(198) 

So we see that the staying probability or the inverse participation ratio, admits a 
purely algebraic expression. The Pastur theorem [Pas] can then be established as 
follows: 

T h e o r e m  13 For almost all w E 12, the number of eigenvalues of H~ in A is either 
zero or infinity. The latter is realized, namely H~ has some point spectrum in A, if 
and only if the averaged inverse participation ratio ~a is positive. 

C o m m e n t :  this criterion is not sufficient to eliminate continuous spectrum. 

We now introduce a stronger notion of localization giving a measurement of the 
localization length. Whenever Try(H) has pure point spectrum, the eigenstate may 
decay faster at infinity on the lattice. We are led to introduce quantities like: 

] 1/p 

g(P)(E,u;) = E IeE,~(n)121nl p (199) 
n~Z D ] 1 

for p > 1. If the eigenstates decrease exponentially fast one can also consider the 
quantity 

g(E, w) = lira sup --In[r (200) 

However such expressions are very badly behaving with w in general and they are 
not suited for comparison with experiments or numerical calculations. The following 
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definition will be more convenient and will give rise to a quantity independent of w. 
We consider the averaged fluctuation of the position in the form: 

AX~,,(T) 2 = (nl(N~(t) - N)2ln) , (201) 

where N,~(t) = @H~tNe-'u~*, and N = (N1, . . . ,No)  is the position operator. The 
covariance property gives AX~ , , (T )  = AXT-,~,o(T) ,  so that after averaging over the 
disorder, we get a quantity independent of n, namely AX(T) 2 = fn dP(w)AX~.o(T)  2" 
An elementary calculation shows that: 

AX(T)  -- (202) 

We will generalize this expression by considering, for every Borel subset A of the real 
line, the corresponding quantity AXz~(T) 2 obtained in the same way if we replace e iHt 

by e i H t p A .  The main result in this respect is the following: 

T h e o r e m  14 I f  
g2(A) = lim sup AXA(T) 2 < c~ , (203) 

T~--*~ 

then H~, has a pure point spectrum in A for almost all w E ~. Moreover, if]q" denotes 
the density of states of H, there is an N-measurable non negative function g on R 
such that for every Borel subset A t of A ,  

e~(A ,) = f , ,  dN'(E)e(E) ~ , (204) 

C o m m e n t :  we will see in the proof that if ~m,(w) denotes the set of eigenvalues of 
H~: 

g2(A ') = ~ d P ( w )  ~ n 2 ~ I(01HE(~)In)I ~ . (205) 
nc=Z D E6app(w)oA 

In particular, letting A shrink to the point E, the function g(E) 2 represents a kind 
of average (over the disorder and over a small spectral set around E), of the quan- 
tity ~ e Z D  n21r 2. Namely it is a measure of the extension of the eigenstate 
corresponding to E. This is the reason for the definition below. 

Defini t ion 2 The function g will be called the localization length for H.  

P r o o f  of  t he  theo rem:  (i)-The basic argument we will use here is due to Guarneri 
[Gua, Bel:Tre]. We will denote by a~(w) the set of eigenvalues of H~ (the point 
spectrum), whereas II~(w) will denote its spectral projection on the point spectrum 
and IIc(w) = I - II~(w) will be its spectral projection on the continuous part of its 
spectrum. Using the definition of the trace in A, we get : 

AXa(T)~ = / n  dP(w) ~ nZpT(~,n) , 
nEZ D 

where, 

p~(~, ~) = f f  ~-I(Ol~(e*"P~)l~)l  ~ �9 

(206) 

(207) 
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We will set pT(n) = fn dP(w)pT(w, n). By definition, we have : 

0 < pT(W, n) < 1 , (208) 

~_, pT(W,n)= 1,  (209) 
nc::Z D 

whereas the Wiener criterion gives 

lira pT(W, n) = ~ I (01IIE(w)In)]2. (210) 
T~--*oo 

EEapp(w)NA 

In particular, if L is a positive integer, and Inloo = maxl_<j<oIn~l, 

l i m  ~ pT(W,n) ~ (0[Hpp(W)10) = 1 - (0tIIc(w)]0) . (211) 
~ I-I~"< L 

If we set r = fn dP(w)(01II~(w ) ]0) we obtain after averaging over the disorder 

l i m  E p T ( n ) _ < l - - r .  (212) 

Since r _> 0, one can find TL > 0 such that if T >__ TL, EI-I~<L pT(n) _< 1 -- r/2. Thus 

A X a ( T )  2 >_ L 2 s dP(w) pT(W,n) > L2(1 - ~ pT(n)) > L2r (213) 
in[c~>_L in]oo< L -- 2 

Taking the limit T ~-~ c~ leads to L2r <_ 2e2(A) < oc for any L E N. Thus r = 0 
showing that  for almost all w's, (0]II~(w)]0) = 0. Using the covariance condition we 
also get for all n's {nlH~(w)]n) = 0 almost surely, and since Z D is countable, there 
is IT C ft of probability one such that  for any w Ef t ' ,  II~(w)]n) = 0 for all n E Z D, 
namely the continuous spectrum is empty. 

(ii)-Given two Borel subsets A1, A2 c A, we define the following expression: 

s ( A  A ~ JOT dt  T,~ t, 1,t-a2} = "~- ~ n 2 ( O l r , . ( e i H t p A 1 ) l n ) ( O l ~ r , ~ ( e ' H t p a 2 ) ] n  ) . ( 2 1 4 )  
I,~I~<L 

In particular g(L~) (A, A) = ~'~qnloo< L n2pT(02, n) .  This expression gives a Borel function 
of w. In addition, using the Wiener criterion, we have: 

lira ~(L)/A A2) E n2 ~ ~ , ~  ,, = ~ I(01n~(~)ln)l  2 = c(L)(A1AA2) . (215) 
In l~<L EEapp (~)FIA1FIA 2 

From this definition of $(L)(A') whenever A' C A is Borel, it follows that  

(a) 0 _< s _< L 2, 
(b) If A, A A2 = q}, then s 0 A2) = s + s 
(c) If (Ai),eN is a decreasing sequence of Borel susbets of A converging to the empty 
set, namely NieN A, = q}, then s decreases to zero, 
(d) g(L)(A') _< s 

(e) g(L)(N) is a Borel function of w as a pointwise limit of Borel functions. 
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After averaging over the disorder we obtain E (L) (A') = fa dP(w)$~ (L) (N) which fulfill 
(a), (b), (c) using the dominated convergence theorem, and (d). From (202,206), we 
also get: 

fo dP(w)~(T~J(A" A') -< fo T -~ T(IVe~HtP~'[2) ' (216) 

Using the dominated convergence theorem we conclude that $(L)(N) < ~ ( N )  and 
also thanks to the property (b), g(L)(A') _< re(A) for A' C iX. It follows that 
limL,oo g(L)(iX,) = g(iX,) exists and defines a non negative a-additive set function 
over the set of Borel subsets of iX, namely a Radon measure. Moreover it satisfies 
g(iXt) < tr2(iX,), and by the monotone convergence theorem, eq.(215) above implies: 

$(iX') = / dP(w) E n2 E I(0lI]E(w)ln)l 2 '  (217) 
nEZ D EEapp(W)CIA 

(iii)-On the other hand the definition of g2(iX,) and Fatou's lemma imply: 

/o e2(iX ') < dP(w) ~ n21imsup ]{Obr,(e~HtpA,)ln)]2. (218) 
nEZD T~--*o~ 

By the Wiener criterion the right hand side is nothing but $(iX') showing that g2(iX,) = 
$(A') < gi(iX) for iX' C iX. Hence it is a nonnegative Radon measure on iX. 
(iv)-To finish the proof it is sufficient to show that this measure is absolutely contin- 
uous with respect to the DOS A/" of H. Let then iX' C iX be such that A/'(iX') = 
T(iX') = 0. From the definition of the trace it follows that (0]Tr~(P~,)[0) = 0 almost 
surely. By covariance and because Z D is countable this gives ~r~(Pa,)In) = 0 for 
all n's almost surely, namely r~(Pn,) = 0 almost surely. Then (214) above implies 
s [iXt T,~ , iX') = 0 for any L, T, and almost every w. Consequently $(iX') = 0, and the 
representation (204) holds. 

7.4 Loca l i za t ion  in the  Kicked Rotor  

As claimed previously, one can use the same formalism for investigating the local- 
ization properties of the kicked rotor. It is then sufficient to work with the Floquet 
operator instead of a Hamiltonian, and with Borel subsets of the circle. However the 
C*-algebra we are using, B~, is parametrized by the effective Planck constant 7, an 
additional parameter here. Apart from this remark, we get the previous structure if we 
set ft = T 2, D = 1, and the action is provided by the Furstenberg map. The Lebesgue 
measure dxdy/47r 2 gives the probability measure, which is ergodic whenever V/27r is 
irrational. In view of the theorem (14) above, we cannot expect any finite localization 
length otherwise, because the action is no longer ergodic and from a result of Izrailev 
and Shepelyanski [IzSh] it follows that we get an absolutely continuous spectrum for 
7%~,y(F) whenever ~//2~r and x / 2 r  are rational. Now, we remark that the definition of 
the localization length coincides with the definition of the mean kinetic energy given 
by (176) up to the constant 3 ,2. Hence FK,.y,x will have a pure point spectrum in A 
whenever the mean kinetic energy 

$.~(3') = v21imsup 1 r - ,  (I ) T ~  T ~ ~-~ O~ ' 
t =0  

(219) 
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is finite. Moreover we get the elementary formula 72t~2~(A) = ~7a(7 ) whenever g~ 
denotes the localization length in term of 7. 

The case of the kicked rotor permits to go a little bit further. First of all, the 
definition of the Floquet operator permits to show that it is C ~ with respect to 00. 
Moreover we get the folowing result: 

P r o p o s i t i o n  10 I f  the localization length g, exists for the Floquet operator FK,~ of 
the kicked rotor model, it is constant over the circle. 

Proof i  Clearly r/y = t)0=0,y (see (135)) commutes with the derivation 00. Moreover r/~ 
translates the spectrum of FK,~ by y along the circle because for any Borel subset A 
o f T :  

u~(FK,~) = e'YFK,,~ , ~/y(Pa) = Pa+y.  (220) 

Thus 

(100(r  2 ) : 2 ) :  , (221) 

because r/y is an automorphism. It implies ~ ( A )  = ~ ( A  + B) for any Borel set A, 
and therefore g(E) = eonst. Thus A is not needed anymore so that : 

C o r o l l a r y  5 For the kicked rotor model the following formula holds 

_- -_~*f  1 T- I  2 lim -- ~ % (IOo(F*K)] 2) (222) 
g~/ ,~2 T~--*oo T t=0 

A result by Casati & Guarneri [CaGu] shows that, the spectral measure of FK,~,~ is 
purely continuous generically in 7. Thus : 

P r o p o s i t i o n  11 For the kicked rotor model there is a dense G~-set F of zero Lebesgue 
measure in [0, 1] such that for any 7 c F the localization length diverges. 

However many numerical calculations [CaChIzFo, BeBa] have shown that the mean 
kinetic energy for the quantum kicked rotor model is bounded in time. So we expect 
the localization length to be finite on a "large set" of 7's, presumably for almost all 7's 
in [0, 1]. Before discussing this question let us mention without proof another result 
which supplement the previous one namely 

P r o p o s i t i o n  12 For the kicked rotor model the localization length is a lower semi- 
continuous function of 7. 

We may also expect V292(7 ) to converges to some finite quantity as 7 ~-~ 0. This 
is the content of the Chirikov-Izrailev-Shepelyansky formula [ChIzSh] found on the 
basis of a numerical work. The well-known observation is that despite the diffusive 
behavior of the classical model (namely for strong coupling) the quantized version 
exhibits, up to a certain breaking time T*, a diffusion-like motion in phase space and 
then for t > ~-* its kinetic energy saturates as a function of time. This numerical 
result allows us to write 

= g~(r*) ~ Dr* , (223) 

where D is the classical diffusion coefficient. 
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There is here a mathematical difficulty. First of all, never was a diffusion coefficient 
shown to exist rigorously for the standard map. Moreover, averaging it over all possible 
initial conditions will not give a finite quantity due to the "Pustilnikov acceleration 
modes" (or "islands of stability"). This means that we should not average over the 
full torus. It raises the question of which quantum average should be considered. 
However, recent works [BeVa, Vai, Cher] have shown that for the sawtooth map, a 
diffusion coefficient does exist. Moreover, a conjecture states that for the standard 
map there is a "large" set of values of K for which no island of stability occurs, and 
a diffusion constant does exist. 

To get the Chirikov-Izrailev-Shepelyansky formula, we argue as follows. Since 
the eigenstates of the Floquet operator are localized, only a finite number g -- g~ of 
eigenvalues contribute effectively to the evolution of the initial state 10). Therefore 
we can approximate this Floquet operator by a g • g matrix F (t). The existence of 
classical chaos will lead to a strong level repulsion. Hence one can consider that the 
mean distance between the quasienergies is A E  ~ 2~r/g = 0(3') on the torus. 

For times short enough, the discrete spectral sum arising from the previous approx- 
imation can be approximated by an integral, which will be precisely the classical ap- 
proximation. Hence for t small, g~(t) ~ gcl(t) ~ Dt. This is fine as long as t A E  << 27r. 
But after a breaking time r* ~ 2~r /AE ~ g, the quantization dominates and gives an 
almost periodic function of time for g~(t). Thus, ~3`2 = ~ ~_ g~(T*) ~-- DT*. Since 
g ~- g~, we get : 

D 
g~ _~ ~ - ~ .  (224) 

Numerical calculations are in a fairly good agreement with this prediction, but no 
rigorous mathematical work has been produced to justify this formula yet. We may 
expect that  : 

lira 0g~/2 = D at K large, (225) 

under certain conditions. For indeed, we have seen that g~ diverges on a generic set 
of 3`'s. Moreover, D does not exist for all K's. 
For the moment we do not know how to define mathematically the breaking time T*. 

We would like now to study the behavior of the kinetic energy for the quantized 
version of the kicked rotor model as the effective Planck constant 3' tends to zero. For 
that, we perform a numerical calculation giving the classical and quantum energies of 
the KR for K = 4 corresponding to the diffusive regime (Fig. l l) .  We computed the 
quantal energy for different values of Planck's constant 3' in both cases; it is easy to 
see that as 3' is decreased the quantal curves tend to the classical one. 

One could think that this energy converges to its classical limit as 3' ~-~ 0 but 
a problem arises because of the uniformity of the semiclassical limit with respect to 
time. 

That  the breaking time be O(72) can be shown by the following heuristic argu- 
ment [HeTo]. The semiclassical approximation [Gut:Hou] for the evolution is correct 
modulo error terms of O(h(3'2). Therefore, the quantum and classical evolutions for 
observables should agree up to time O(h-~). Whenever the semiclassical approxima- 
tion is exact, however, such as in the hydrogen atom, the harmonic oscillator, the 
Arnold Cat map, we should not see any breaking time. 
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A p p e n d i x  

Our aim in this appendix is to prove the theorem 1. The following theorem 15 
actually implies the theorem 1. 

Let 7-/be a separable Hilbert space and H be a self adjoint operator on 7-/with 
domain D. This domain becomes a Hilbert space when endowed with the norm 
[ICl[  = I[r 2 + ][Hr 2. Let also V be a bounded self adjoint operator on 7-/leaving 
the domain D invariant and bounded on it for the domain norm H" ]IH. Let also 
f be a periodic continuous function on R with period T. Then the solution of the 
Schrbdinger equation : 

ihCt = (H + f ( t )V)r  , (226) 

with r  = r  is given by 
r  = u(t, s ) r  (227) 

where U(t, s) is a unitary operator such that  : 

(i) it is strongly continuous with respect to s, t , 
(ii) U(s, s) = I for all s e R, 
(iii) V(t, s) = V(t, t')Ut', s) for all t '  E R,  
(iv) U(t + T, s + T) = U(t, s) for all s, t E R, 
(v) for any r E D, the vector U(t, s)r belongs to D, is strongly differentiable with 
respect to s and t and is a solution of the Schrbdinger equation. 

The operator Fs = U(s + T, s) is called the Floquet operator for the family H(t) = 
H + f ( t )V .  Notice that  if t = s the corresponding Floquet operators are unitarily 
equivalent thanks to (iii) and (iv). 

Now for ~ a positive real number, let p~ be a non negative function on R with 
support in the interval [-~, ~] and of integral equal to one. We will set : 

f~(t) : ~ p~(t - nT) .  (228) 
nEZ 

Let F~ be the corresponding Floquet operator with t = -e .  Then the following result 
holds : 

T h e o r e m  15 As ~ tends to zero, the Floquet operator F~ converges strongly to the 
unitary operator F given by : 

F = e - ' ( ~ ) . e - ~ ( D  . (229) 

P r o o f  : Denoting by U~(t, s) the evolution operator, it is a classical result that  it 
admits the following Dyson expansion, which converges in norm : 

U,(t, 8) = ~-~n)O (__~)n ~s(sn(...~_s,~_t dSl . . ,  dsnfe(sa)Z(s2).., f~(s.) 
(230) 

e-(t-sl)~-Ve -(s'-82)~- V . . .  Ve -(8"-s)~- . 

Each term is a well defined strong integral. Taking t = T - ~ and s = - ~  we get an 
expansion for the Floquet operator. 
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As ~ tends to zero, the restriction of the measure f~(s)ds to the interval [-r T - ~] 
converges weakly to the Dirac measure supported by (0}. Since the integrand is 
strongly continuous, the term of order n in the Dyson expansion of F~ converges 

strongly to (_~)n  e_,(_~__)V,Vn!" Summing up all these terms gives the result. 
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Figure captions 
Fig.1 Spectrum of Harper's model (Hofstadter's butterfly). 
Fig.2 Magnetic translations and fluxes through elementary cells ; upper figure : square 
lattice ; lower figure : triangular lattice, from [BeKrSe]. 
Fig.3 Spectrum of triangular lattice with 77 = 27r0.0175 around half flux, from 
[BeKrSe]. 
Fig.4 Spectrum of square lattice with second nearest neighbour interaction, from 
[BaKr]. 
Fig.5 Asymmetry of the central band edges for the Harper model near ~ = 1/3. 
Fig.6 Conical contact between bands at half flux in the Harper model. 
Fig.7 Spectrum of the Hamiltonian with second nearest neighbour interaction near 
half flux, from [BaKr]. 
Fig.8 Parabolic contacts between bands at half flux in a Harper-like model, with third 
nearest neighbour interaction, from [BaF1]. 
Fig.9 Braiding of Landau sublevels in a model with second nearest neighbour inter- 
action, from [BaKr]. 
Fig.10 Braiding of Dirac sublevels near half flux in a model with third nearest neigh- 
bour interaction, from [BaF1]. 
F i g . l l  Time evolution of the kinetic energy for the standard map in the chaotic 
regime K = 4; thc staight line corresponds to the classical energy and points represent 
quantum curves for different values of the effective Planck constant. 
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