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Abstract. Given a square matrix with elements in the group-ring of a group, one can consider the sequence
formed by the trace (in the sense of the group-ring) of its powers. We prove that the corresponding generating
series is an algebraic G-function (in the sense of Siegel) when the group is free of finite rank. Consequently, it
follows that the norm of such elements is an exactly computable algebraic number, and their Green function
is algebraic. Our proof uses the notion of rational and algebraic power series in non-commuting variables
and is an easy application of a theorem of Haiman. Haiman’s theorem uses results of linguistics regarding
regular and context-free language. On the other hand, when the group is free abelian of finite rank, then
the corresponding generating series is a G-function. We ask whether the latter holds for general hyperbolic
groups.
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1. Introduction

1.1. Algebricity of the Green’s function for the free group. Given a group G, consider the group-
algebra Q[G], and define a trace map:

(1) Tr : Q[G] −→ C, Tr(P ) = constant term of P
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where the constant term is the coefficient of the identity element of G. Let MN (R) denote the set of N by
N matrices with entries in a ring R. We can extend the trace to the algebra MN(Q[G]) by:

(2) Tr : MN (Q[G]) −→ C, Tr(P ) =

N∑

j=1

Tr(Pjj).

Definition 1.1. Given P ∈ MN(Q[G]), consider the sequence (aP,n)

(3) aP,n = Tr(Pn)

and the generating series

(4) RP (z) =

∞∑

n=0

aP,nz
n.

Let Fr denote the free group of rank r.

Theorem 1. The Green’s function RP (z) of every element P of MN(Q[Fr ]) is algebraic.

Theorem 1 appears in the cross-roads of several areas of research:

(a) operator algebras
(b) free probability
(c) linguistics and context-free languages
(d) non-commutative combinatorics
(e) mathematical physics

In fact, Woess proves Theorem 1 when N = 1 using linguistics and context-free languages; see [Wo1, Wo2].
Voiculescu proves Theorem 1 using the R and S transforms of free probability; see [Vo1, Vo2]. For additional
results using free probability, see [Ao, CV] and also [Le1, Le2].

It is well-known that Theorem 1 provides an exact calculation of the norm of P ∈ MN(Q[Fr ]) ⊂
MN (L(Fr)), where L(Fr) denotes the reduced C∗-algebra completion of the group-algebra C[Fr ]. For a
detailed discussion, see the above references.

Our proof of Theorem 1 uses the notion of an algebraic function in non-commuting variables and a theorem
of Haiman, which itself is based on a theorem of Chomsky-Schützenberger on context-free languages. A by-
product of our proof is the fact that the moment generating series is a matrix of algebraic power series in
non-commuting variables (see Proposition 4.4), which is a statement a priori stronger than Theorem 1.

An alternative proof of Theorem 1 uses methods from functional analysis, and most notably the Schur
complement method (see below). We will discuss in detail the first proof and postpone the third proof to a
later publication. Either proof explains the close relation between the differential properties of the generating
function RP (z) and the word problem in G.

2. The case of the free abelian group

2.1. Holonomic, algebraic and G-functions. A priori, RP (z) is only a formal power series. However,
it is easy to see that (aP,n) is bounded exponentially by n, which implies that RP (z) defines an analytic
function in a neighborhood of z = 0. The paper is concerned with differential/algebraic properties of the
function RP (z). Algebraic and holonomic functions are well-studied objects. Let us recall their definition
here.

Definition 2.1. (a) A holonomic function f(z) is one that satisfies a linear differential equation with
polynomial coefficients. In other words, we have:

cd(z)f
(d)(z) + · · · + c0(z)f(z) = 0

where cj(z) ∈ Q[z] for all j = 0, . . . , d and f (j)(z) = dj/dzjf(z).
(b) An algebraic function f(z) is one that satisfies a polynomial equation:

Q(f(z), z) = 0

where Q(y, z) ∈ Q[y, z].
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Lesser known to the combinatorics community are G-functions, which originated in the work Siegel on
arithmetic problems in elliptic integrals, and transcendence problems in number theory; see [Si]. Holonomic
G-functions originate naturally in

(a) algebraic geometry, related to the regularity properties of the Gauss-Manin connection, see for ex-
ample [De, Ka, Ma],

(b) arithmetic, see for example [An2, Bm, DGS],
(c) enumerative combinatorics, as was recently shown in [Ga2].

Definition 2.2. A G-function f(z) =
∑∞

n=0 anz
n is one which satisfies the following conditions:

(a) for every n ∈ N, we have an ∈ Q,
(b) there exist a constant Cf > 0 such that for every n ∈ N we have: |an| ≤ Cn

f (for every conjugate of

an) and the common denominator of a0, . . . , an is less than or equal to Cn
f .

(c) f(z) is holonomic.

The next theorem summarizes the analytic continuation and the shape of the singularities of algebraic
functions and G-functions. Part (a) follows from the general theory of differential equations (see eg. [Wa]),
parts (b) and (d) follow from [CSTU, Lem.2.2] (see also [DGS] and [DvdP]) and (c) follows from a combination
of Katz’s theorem, Chudnovsky’s theorem and André’s theorem; see [An2, p.706] and also [C-L].

Theorem 2. (a) A holonomic function f(z) can be analytically continued as a multivalued function in C\Σf

where Σf ⊂ Q is the finite set of singular points of f(z).
(b) Every algebraic function f(z) is a G-function.
(c) In a neighborhood of a singular point λ ∈ Σf , a G-function f(z) can be written as a finite sum of germs
of the form:

(5) (z − λ)αλ(log(z − λ))βλhλ(z − λ)

where αλ ∈ Q, βλ ∈ N, and hλ a holonomic G-function.
(d) In addition, βλ = 0 if f(z) is algebraic.

Remark 2.3. Local expansions of the form (5) are known in the literature as Nilsson series (see [Ni]), and
minimal order linear differential equations that they satisfy are known to be regular singular, with rational
exponents {aλ} and quasi-unipotent monodromy. For a discussion, see [Ka, Ma, Ga2] and references therein.

It is classical and easy to show that the existence of analytic continuation of a function implies the
existence of asymptotic expansion of its Taylor series; see for example [Ju, Co] and also [CG, Sec.7] and
[Ga2].

Lemma 2.4. If f(z) =
∑∞

n=0 anz
n is holonomic and analytic at z = 0, then the nth Taylor coefficient an

has an asymptotic expansion in the sense of Poincaré

(6) an ∼
∑

λ∈Σ

λ−nn−αλ−1(logn)βλ

∞∑

s=0

cλ,s

ns

where Σf is the set of singularities of f , αλ, βλ ∈ Q, and cλ,s ∈ C.

2.2. The case of the free abelian group. In this section we will summarize what is known about the
generating functions RP (z) when G = Zr is the free abelian group or rank r. The next theorem is shown in
[Ga2], using Andreé main theorems from [An2]. An alternative proof uses the regular holonomicity of the
Gauss-Manin connection and the rationality of its exponents. This was kindly communicated to us by C.
Sabbah (see also [DvK]). Holonomicity of RP (z) also follows from a fundamental result of Wilf-Zeilberger,
explained in [Ga2].

Theorem 3. [Ga2] For every P ∈MN (Q[Zr]), RP (z) is a G-function.
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2.3. A complexity remark. Given P ∈MN (Q[Fr]) (resp. P ∈MN (Q[Fr])), one may ask for the complex-
ity of a minimal polynomial Q(y, z) ∈ Q[y, z] (resp. minimal degree differential operatorD(z, ∂z) ∈ Q〈z, ∂z〉)
so that Q(RP (z), z) = 0 (resp. D(z, ∂z)RP (z) = 0). One expects that the y-degree of Q(y, z) and the ∂z-
degree of D(z, ∂z) is exponential in the complexity of P , where the latter can be defined to be the degree
of P and the maximum of the absolute values of the coefficients of the enrties of P . This prohibits explicit
calculations in general.

2.4. Acknowledgement. The second author wishes to thank R. Gilman, F. Flajolet, L. Mosher, C. Sabbah
and D. Zeilberger for stimulating conversations and D. Voiculescu for bringing into the attention relevant
literature on free probability.

3. A theorem of Haiman and a proof of Theorem 1

In [Ha] Haiman proves the following theorem.

Theorem 4. [Ha] Let K be a field with a rank 1 discrete valuation v; Kv its completion with respect to
the metric induced by v. Let f(x1, . . . , xr, y1, . . . , yr) be a rational power series over K in non-commuting
indeterminants. Any coefficient of f(x1, . . . , xr, x

−1
1 , . . . , x−1

r ) converging over Kv is algebraic over K.

Letting K = Q(z), and Kv = Q((z)) the ring of formal Laurent series in z, and considering the element
(1 − zP )−1, where P ∈ MN (Q[Fr]), gives an immediate proof of Theorem 1.

In the next section we will give a detailed description of Haiman’s argument which exhibits a close relation
to linguistics, as well as an obstruction to generalizing Theorem 1 to groups other than the free group.

4. Algebraic and rational functions in noncommuting variables

4.1. Rational, algebraic and holonomic functions in one variable. In this section all functions will

be analytic in a neighborhood of z = 0. Let Qrat
0 (z), Q

alg
0 (z) and Qhol

0 (z) denote respectively the set of
rational, algebraic and holonomic functions, analytic at z = 0. Let Q[[z]] denote the set of formal power

series in z. Using the injective Taylor series map around z = 0, we will consider Qrat
0 (z), Q

alg
0 (z) and Qhol

0 (z)
as subsets of Q[[z]]:

(7) Qrat
0 (z) ⊂ Q

alg
0 (z) ⊂ Qhol

0 (z) ⊂ Q[[z]].

Q[[z]] has two multiplications:

• the usual multiplication of formal power series

(8) (

∞∑

n=0

anz
n) · (

∞∑

n=0

bnz
n) =

∞∑

n=0

(

n∑

k=0

akbn−k)zn.

• The Hadamard product:

(9) (

∞∑

n=0

anz
n) ~ (

∞∑

n=0

bnz
n) =

∞∑

n=0

anbnz
n.

With respect to the usual multiplication, Q[[z]] is an algebra and Qrat
0 (z), Q

alg
0 (z) and Qhol

0 (z) are subalgebras.
In case two power series are convergent in a neighborhood of zero, so is their Hadamard product. Hadamard,
Borel and Jungen studied the analytic continuation and the singularities of the Hadamard product of two
functions; see [Bo, Ju]. Their method used an integral representation of the Hadamard product, and a
deformation of the contour of integration; see [Ju, Fig.2,p.303]. Let us summarize these classical results.

Theorem 5. (a) If f and g are rational, so is f ~ g.
(b) If f is rational and g is algebraic, then f ~ g is algebraic.
(c) If f and g are holonomic (resp. regular holonomic with rational exponents), so is f ~ g.
(d) If f and g are algebraic, then f ~ g is not necessarily algebraic.

For a proof, see Thm.7, Thm.8, Theorem E and the example of p.298 from [Ju].
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4.2. Rational and algebraic functions in noncommuting variables. In this section we discuss a
generalization of the previous section to non-commuting variables. Let X be a finite set, and let X∗ denote
the free monoid on X . In other words, X consists of the set of all words in X , including the empty word e.
Let Q〈X〉 (resp. Q〈〈X〉〉) denote the algebra of polynomials (resp. formal power series) in non-commuting
variables. In [Sh], Schützenberger defines the notion of a rational and an algebraic power series in non-
commuting variables. Let Qrat〈X〉 and Qalg〈X〉 denote the sets of rational (resp. algebraic) power series.
Then, we have an inclusion:

(10) Qrat〈X〉 ⊂ Qalg〈X〉 ⊂ Q〈〈X〉〉.

Q〈〈X〉〉 has two multiplications:

• the usual multiplication of formal power series in non-commuting variables:

(11) (
∑

w∈X∗

aww) · (
∑

w∈X∗

bww) =
∑

w∈X∗

(
∑

w′,w′′:w′w′′=w

aw′bw′′)w.

• The Hadamard product:

(12) (
∑

w∈X∗

aww) ~ (
∑

w∈X∗

bww) =
∑

w∈X∗

awbww.

With respect to the usual multiplication, Q〈〈X〉〉 is a non-commutative algebra and Qrat〈X〉 and Qalg〈X〉
are subalgebras. We have the following analogue of Theorem 5.

Theorem 6. [Sh, Pro.2.2] (a) If f ∈ Qrat〈X〉 and g ∈ Qrat〈X〉, then f ~ g ∈ Qrat〈X〉.
(b) If f ∈ Qrat〈X〉 and g ∈ Qalg〈X〉, then f ~ g ∈ Qalg〈X〉.

Remark 4.1. The notion of rational and algebraic functions works for an arbitrary ring R of characteristic
zero, instead of Q. Theorem 6 is still valid.

4.3. Proof of Theorem 1. Let Fr denote the free group of rank r with generating set {u1, . . . , ur}, and

X = {x1, . . . , xr, x1, . . . , xr}.

Consider the monoid map:

(13) π : X∗ −→ Fr, π(xi) = ui, π(xi) = u−1
i .

The kernel Ker(π) of π is the set of those words in X which reduce to the identity under the relations
xixi = xixi = e. Let

(14) ∆ =
∑

w∈Ker(π)

w ∈ Q〈〈X〉〉.

The next proposition is attributed to Chomsky-Schützenberger by Haiman. For a proof, see [Ha, Sec.3].

Proposition 4.2. [CS] ∆ is algebraic.

The map π has a right inverse (that satisfies π ◦ ι = IFr
):

(15) ι : Fr −→ X

defined by mapping a reduced word in ui to a corresponding word in X . For every f ∈ Q[Fr] we have a key
relation between trace and Hadamard product:

(16) Tr(f) = φ(ι(f) ~ ∆)

where φ is a Q-linear map defined by:

(17) φ : Q〈X〉 −→ Q, φ(w) = 1 for w ∈ X∗.
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Now, fix P ∈ MN (Q[Fr]). Let ∆N denote the N by N matrix with entries equal to ∆, and R = Q(z).
Let

Pz = zι(P ) ∈ MN(R〈X〉), P ∗
z =

∞∑

n=0

Pn
z ∈MN (R〈〈X〉〉).

Notice that P ∗
z is well-defined since Pz has no z-constant term.

Lemma 4.3. We have:

(18) P ∗
z ∈MN(Rrat〈X〉).

Proof. P ∗
z satisfies the matrix equation

(1 − Pz)P
∗
z = I

with entries in R〈X〉. �

Lemma 4.3, together with Propositions 4.2 and part (b) of 6 imply the following result, which we can
think as a noncommutative analogue of Theorem 1.

Proposition 4.4. For every P ∈MN (Q[Fr]), we have:

(19)

∞∑

n=0

zn(ι(P ))n
~ ∆N ∈MN (Ralg〈X〉).

Consider the abelianization ring homomorphism:

(20) ψ : R〈〈X〉〉 −→ R[[X ]]

where R[[X ]] is the formal power series ring in commuting variables. Haiman proves the following:

Proposition 4.5. [Ha, Prop.3.3] If f ∈ Ralg〈X〉, then ψ(f) is algebraic over R(X).

It follows that ψ(P ∗
z ~ ∆N ) ∈ MN(Ralg(X)). Consider now the subalgebra Rconv[[X ]] of R[[X ]] that

contains all elements of the form

∑

w∈X∗

aww

where aw ∈ zl(w)Q[[z]], where l(w) denotes the length of w. Then, we can define an algebra map:

(21) φz : Rconv[[X ]] −→ Q[[z]], φz(w) = 1 for x ∈ X.

Haiman shows that if f ∈ Ralg(X) ∩ Rconv[[X ]], then φz(f) ∈ Qalg. To state our final conclusion, we

define for 1 ≤ i, j ≤ N , the sequence (aij
P,n) by

aij
P,n = Tr((Pn)ij)

and the matrix of generating series AP (z) ∈ MN(Q[[z]]) by:

(AP (z))ij =

∞∑

n=0

aij
P,nz

n.

Lemma 4.6. We have:

(22) (φz ◦ ψ)(P ∗
z ~ ∆N ) = AP (z).

Thus, AP (z) ∈MN (Qalg
0 (z)).

Proof. Equation (22) follows from Equation (16). The conclusion follows from the above discussion. �
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Thus, the entries of AP (z) are algebraic functions, convergent at z = 0. Since by definition we have:

RP (z) =

N∑

i=1

(AP (z))ii

it follows that RP (z) ∈ Q
alg
0 (z). This completes the proof of Theorem 1. �

5. Some Linguistics

5.1. Regular and context-free languages. Haiman’s proof uses the key Proposition 4.2 from linguistics.
Let us recall some concepts from this field. See for example [BR, Li, Ya] and references therein. Given
a finite set X (the alphabet), a language L is a collection of words in X . In other words, L ⊂ X∗. The
generating series FL of a language is:

FL =
∑

w∈L

w ∈ Q〈〈X〉〉.

It follows that for two languages L1 and L2 we have:

FL1∩L2
= FL1

~ FL2
.

A language L is called rational (resp. context-free) iff FL ∈ Qrat(X) (resp. FL ∈ Qalg(X)). In this context,
Theorem 6 takes the following form:

Theorem 7. [CS] (a) If L1 and L2 are rational languages, so is L1 ∩ L2.
(b) If L1 is rational and L2 is (unambiguous) context-free, then L1 ∩ L2 is (unambiguous) context-free.

It was pointed out to us independently by D. Zeilberger and F. Flajolet that the above theorem essentially
proves Theorem 1.

5.2. Some questions. Let us end this short paper with some questions. Despite the similarity in their
statements and the multitude of proofs, Theorems 1 and 3 have different assumptions, different proofs and
different conclusions.

Consider a generating set X for a group G such that every element of G can be written as a word in
X with nonnegative exponents. Given X and G, let LX denote the set of all words in X that map to the
identity in G. Deciding membership in LX is the word problem in G.

Definition 5.1. A group G has context-free word problem if it has a generating set X such that the language
LX is context-free.

The proof of Theorem 1 applies to groups with a context-free word problem. Miller-Schupp classified
those groups. In [MS] Miller-Schupp prove that G has context-free word problem iff G has a free finite-index
subgroup.

On the other hand, if G is the fundamental group of a hyperbolic manifold of dimension not equal to 2,
then G does not have a free finite-index subgroup.

Thus, the linguistics proof of Theorem 1 does not apply to the case of hyperbolic groups in dimension
three. Neither does it apply to the case of Zr since the latter does not have context-free word problem.

Question 1. If P is a hyperbolic group and P ∈ MN(Q[G]), is it true that RP (z) is a G-function?

The question may be relevant to low dimensional topology, when one tries to compute the `2-torsion
of a hyperbolic manifold using Luecke’s theorem; [Lu]. In that case, the matrix P comes from Fox (free
differential) calculus of a presentation of the fundamental group G of the hyperbolic manifold. See also [DL].

Question 2. Given P ∈ MN (Q[Fr]), consider the abelianization P ab ∈ MN (Q[Zr]), and the G-functions
RP (z) and RP ab(z). How are the singularities of RP (z) and RP ab(z) related?

Question 3. What is a holonomic function in non-commuting variables?



8 STAVROS GAROUFALIDIS AND JEAN BELLISSARD

6. A functional analysis interpretation of Theorem 1

The present paper is focusing on results and techniques inspired by algebra, non-commutative algebraic
combinatorics. However it is worth mentioning that Theorem 1 has applications to problems coming from
functional analysis, spectral theory, and the spectrum of Schrödinger operators. For instance, the Schrödinger
equation describing the electron motion in a d-dimensional periodic crystal, can be well approximated by the
difference equation on a lattice of same dimension. The corresponding operator can be seen as an element
of the group ring of Zd. The function RP (z) defined previously is noting but the diagonal element of the
resolvent and is used to compute the spectral measure, through the Charles de la Vallée Poussin theorem.
There are instances for which, this operator is better approximated by the free group analog. For instance the
retracable path approximation was used by Brinkman and Rice [BrRi] in 1971 to treat the effect of spin-orbit
coupling in the Hall effect, while it was used in [BFZ] to compute the electronic Density of States when the
electron is submitted to a random magnetic field. The same operator, seen as an element of the free group
ring, is used to describe various infinite dimension approximations. The seminal work of Georges and Kotliar
[GK] used this free group approximation to give the first model known with a Mott-Hubbard transition.

Another domain in which the Theorem 1 may apply is the Voiculescu Theory of Free Probability [Vo2, Vo3].
The so-called R-transform used to treat the convolution of free random variables, is also based upon the
Schur complement formula. In particular the free central limit theorem asserts that a sum of identically
distributed free random variable obey the semicircle law, is a special case of the present result.

Besides the two proofs of Theorem 1 discussed in this paper, the algebraic character of RP (z) can also be
deduced from the used of the Schur complement method [Sch]. This is what makes the free group approxi-
mation so attractive to theoretical physicists. This method, also known under the name of Feshbach method
[Fe1] is used in many domains of Physics, Quantum Chemistry, Solid State Physics, Nuclear Physics, to re-
duce the Hilbert space to a finite dimensional one and make the problem amenable to numerical calculations.
However, very few Mathematical Physicists have paid attention to the fact that algebraicity or holonomy
can give rise to results concerning the explicit computation of the spectral radius, or more generally, to the
band edges, of the Hamiltonian they consider. This later problem is known to be notably hard with other
methods.

For the benefit of the reader, we include some history of that method. The Schur complement method [Sch]
is widely used in numerical analysis under this name, while Mathematical Physicists prefer the reference to
Feshbach [Fe1]. In Quantum Chemistry, the common reference is Feshbach-Fano [Fa1] or Feshbach-Löwdin
[Lo]. This method is used in various algorithms in Quantum Chemistry (ab initio calculations), in Solid
State Physics (the muffin tin approximation, LMTO) as well as in Nuclear Physics. The formula used above
is found in the original paper of Schur [Sch, p.217].

The formula has been proposed also by an astronomer Tadeusz Banachiewicz in 1937, even though closely
related results were obtained in 1923 by Hans Boltz and in 1933 by Ralf Rohan [PS]. Applied to the Green
function of a selfadjoint operator with finite rank perturbation, it becomes the Krĕın formula [Kr].

Let us end this section with a small dictionary that compares our notions with those in physics.

H ∈MN (Q[Fr]) Hamiltonian
1/(z −H) resolvant
1/zRH(1/z) trace of the resolvant
Tr(Hn) nth moment of H
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