ANOMALOUS TRANSPORT AND QUASICRYSTALS

J. BELLISSARD, H. SCHULZ-BALDES
Laboratoire de Physique Quantique, URA 505, CNRS

Université Paul-Sabatier, Toulouse, France

ABSTRACT

We give an account of the existing rigorous results recently available concerning the
description of anomalous quantum diffusion. We also propose a mathematically well-
defined model describing dissipation and giving rise to the so-called “relaxation-time
approximation”. This model permits to prove rigorously the Greenwood-Kubo formula.
In addition we can define properly a family of fractal exponents arising in the transport
properties. We give various rigorous relations between them. This framework should be
useful in view of the transport properties of quasicrystals.

1. Introduction

In the recent years many quantum systems have been found exhibiting anomalous trans-
port properties. The oldest example is provided by the Fibonacci and Harper equations2.
Anomalous diffusion was also found for the 2D octagonal quasicrystal in the metallic regime
34 Actually, the series of experiments performed on stable quasicrystals alloys, like AlFeCu or
AlPdRh, show that the low temperature conductivity of quasicrystals is probably dominated
by a quantum subdiffusive regime®. This is the main reason why it is necessary to know more
about anomalous quantum diffusion.

By anomalous diffusion, we mean that the mean square displacement behaves like

T dt
T <IX(t) - X|*>~ T*, as T — oo, (1)

where 0 < o0 < 1. o is called the diffusion exponent. Localization corresponds to o = 0
whereas ballistic motion corresponds to o = 1 and regular quantum diffusion to o = 1/2. We
will say that the anomalous quantum motion is subdiffusive if 0 < o < 1/2 and overdiffusive if
1/2<0<1.

Anomalous diffusion implies that the Hamiltonian describing the quantum motion has
singular continuous or pure-point spectrum at least in 1D (see Guarneri’s bound below). In
particular, the local density of state (LDOS), namely the spectral measure, is expected to be
multifractal. Note, however, that this does not necessarily imply the existence of gaps in the
spectrum, as can be seen on the 2D octagonal quasicrystal®.

Very few rigorous results concerning anomalous diffusion and its relation with spectral and
transport properties are known by now. The oldest result in that respect is the Guarneri bound
giving a relation between the fractal properties of the LDOS and the diffusion properties®’.
More is known about one-particle Hamiltonians with singular continuous spectrum®%%-1t A
more systematic study of such Hamiltonians with is now available %13,



The purpose of this short note is to provide a mathematical background for the study
of anomalous quantum transport and to give a few properties that may be useful for future
investigations. Part of it can be found in a previous work of the authors concerning the
quantum Hall effect'* and in'®. The other original results will be written in a forthcoming

paper!6
2. The Greenwood-Kubo Formula

For simplicity we will consider the electron fluid in a quasicrystal of physical dimension D
and assume that it can be represented as a gas of independent fermions on the quasilattice
defined by the equilibrium positions of the ions. We will always assume that the sample,
denoted by A, is large enough to consider its volume |A| as infinite. We will denote by H
the one-particle Hamiltonian and by X = (X1,...,Xp) the position operators. The current
operator is then .J = e[X, H]/(1h). If the system is prepared in an equilibrium state at inverse
temperature § with a chemical potential u, the thermal averaged density of an homogeneous
observable A is given by

1

< A= Jim T () 4) 2)
where fz,(E) is the Fermi distribution function. Clearly, at equilibrium, the average current
vanishes. To get a non-zero current we need to switch on an external electric field £. For
simplicity, we assume that this field is uniform in space and periodic in time with pulsation w.
We let therefore the time evolution of observables for ¢ > 0 be governed by the Hamlltoman
Hg(t) = H + e£(t (¢ )X The actual current density at frequency w is the time average j =
limg oo [ dt/T < J(t) >, e". We have proved in'* for w = 0 the following result, valid
for any frequency:

Proposition: If H is bounded, the component of the current j parallel to & vanishes.

This surprising result is actually due to the absence of dissipation mechanisms. To introduce
some dissipation we have proposed to add to the Hamiltonian a term of the form

Hcoll - Z 5(t - tn)WTL ) (3)

nez
where the collision times ¢,, are random in such a way that the 7,, = ¢, —¢,_; are independent
random variables Poisson distributed with average 7., and the collision operators W,’s are
independent random operators. We have also assumed that the distribution of the collision
operators is such that x(H) = H if k(A) = E(e""Ae™"") and E represents the average over
the collision operators. This last property is needed if we want the collisions to enforce the
equilibrium.

Now the collision average of the current is not zero anymore. As £ - 0, the current is
given by linear response theory, namely 7 = 6€ where ¢ is the conductivity tensor

Kubo’s formula in relaxation time approximation'*

1 1
; = —% Jm —T H 1
O—ayb(w) h |A‘1£>nOO |A| rA (abfﬂ u( )(]‘ - K/)/Tcoll - ‘CH - w aa > 7 ( )

where we have set 0,4 = 1[X,,a] and Ly(A) = 1[H, A]/h. In periodic media this formula
yields the usual one!”.




3. Spectral and Transport Exponents

Let f(g) be a positive measurable function of the variable ¢ € [0,1]. According to®'®, we
will say that f(g) ~e“ase — 0 if
@ de
a:sup{7€R|E|0<a§18uchthat/Ty(6)<oo}. (5)
0 €

A similar definition holds for ¢ — co. Let now v be a positive measure on the real line R. We
define its local exponent o, (E) by [5 5 dv(E') ~ e®F) as e — 0.

£

Proposition: The following results hold 5'6:
(i) The map E — «,(E) is borelian and 0 < «,(E) < 1 for v-almost all E’s.

(ii) If v is pure-point, then «,(E) = 0 v-almost surely. If v is absolutely continuous then
a,(E) = 1 v-almost surely. In particular, if 0 < a,(E) < 1 (v-almost surely) then v is singular
continuous.

(iii) For a complex number z, let G(z) = [g dv(E")(2—FE")"! be the Green function associated to
v. Then the spectral exponent can be calculated by be the exponent defined by SmG(E +1£) ~
g (B)=1 a5 ¢ — 0.

We now consider the Hamiltonian H describing the one-particle motion of the electron
fluid. By our hypothesis, its matrix elements <z|H |y > are indexed by the lattice sites of the
quasicrystal. We let Po be the projection onto the eigenspace corresponding to energies in an
interval A C R. The diffusion exponent o,(A) will be defined as

o dI' (Tdt

1. , oy
51nf{76R|/1 = [ T <alPa(X() = XPPsfe> <o} (6)

The diffusion exponent o,(E) is the infimum of the o,(A)’s over all intervals containing E.

On the other hand, given x in the lattice, the spectral measure relative to x is defined by
p, defined by [g dp,(E)f(E) =< z|f(H)|x > for a continuous function f. If o, (E) is the
corresponding exponent, for A a Borel subset of the real line, let a,(A) denote the essential
infimum of the o, (E)’s (E' € A) obtained after cutting out from A a subset of zero p,—measure
if necessary. If D is the dimension of physical space, we have

Guarneri’s inequality®’: a:(A) < Do (A).

Note that this result gives interesting consequences. In 1D, anomalous diffusion produces
automatically a singular spectrum. However if D > 1, we may have coexistence of anomalous
diffusion and absolutely continuous spectrum. For indeed, absolutely continuous spectrum
implies a,(A) = 1, whereas Guarneri’s bound permits o,(A) > 1/D. In 3D we may have
subdiffusive behavior with an absolutely continuous spectrum provided o,(A) > 1/3.

An averaged diffusion exponent o(FE) can be defined in much the same way by taking in
(6) the space average over z and letting A shrink to E'S.

Let us now consider the conductivity given by the Kubo formula (4) in the limit for which
the operator (1 — k) can be viewed as a real number. Then we define the relaxation time by
T = Teon/ (1 — k). For a normal metal, Drude’s formula implies that 6,, ~ 7., as T,q — 0.
Here, if Er is the Fermi level, we get in the limit of very low temperature

20(Er)—1

Anomalous Drude formula: Oaa ~ Toal , as T,y — 00 .



This result shows that if the diffusion is ballistic, the Drude formula holds, if the system is
localized, then the conductivity vanishes as the dissipation disappears. If the quantum diffusion
is normal, namely if 0(Ey) = 1/2, the conductivity is finite in the limit of vanishing dissipation.

These last results are actually compatible with the experiments performed on quasicrystals
provided we accept that in a 3D quasicrystal the quantum motion is subdiffusive. In this
case the larger the relaxation time, the smaller is the conductivity. This mechanism has been

proposed by Mayou® and Sire* to explain why the conductivity decreases to zero at very low

temperatures and why the inverse Mathiessen rule holds. More details will be given in'®.
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