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ABSTRACTWe give an account of the existing rigorous results recently available concerning thedescription of anomalous quantum di�usion. We also propose a mathematically well-de�ned model describing dissipation and giving rise to the so-called \relaxation-timeapproximation". This model permits to prove rigorously the Greenwood-Kubo formula.In addition we can de�ne properly a family of fractal exponents arising in the transportproperties. We give various rigorous relations between them. This framework should beuseful in view of the transport properties of quasicrystals.1. IntroductionIn the recent years many quantum systems have been found exhibiting anomalous trans-port properties. The oldest example is provided by the Fibonacci and Harper equations1;2.Anomalous di�usion was also found for the 2D octagonal quasicrystal in the metallic regime3;4. Actually, the series of experiments performed on stable quasicrystals alloys, like AlFeCu orAlPdRh, show that the low temperature conductivity of quasicrystals is probably dominatedby a quantum subdi�usive regime5. This is the main reason why it is necessary to know moreabout anomalous quantum di�usion.By anomalous di�usion, we mean that the mean square displacement behaves likeZ T0 dtT < jX(t)�Xj2> � T 2� , as T !1 , (1)where 0 < � < 1. � is called the di�usion exponent. Localization corresponds to � = 0whereas ballistic motion corresponds to � = 1 and regular quantum di�usion to � = 1=2. Wewill say that the anomalous quantum motion is subdi�usive if 0 < � < 1=2 and overdi�usive if1=2 < � < 1.Anomalous di�usion implies that the Hamiltonian describing the quantum motion hassingular continuous or pure-point spectrum at least in 1D (see Guarneri's bound below). Inparticular, the local density of state (LDOS), namely the spectral measure, is expected to bemultifractal. Note, however, that this does not necessarily imply the existence of gaps in thespectrum, as can be seen on the 2D octagonal quasicrystal3.Very few rigorous results concerning anomalous di�usion and its relation with spectral andtransport properties are known by now. The oldest result in that respect is the Guarneri boundgiving a relation between the fractal properties of the LDOS and the di�usion properties6;7.More is known about one-particle Hamiltonians with singular continuous spectrum8;9;10;11. Amore systematic study of such Hamiltonians with is now available 12;13.1



The purpose of this short note is to provide a mathematical background for the studyof anomalous quantum transport and to give a few properties that may be useful for futureinvestigations. Part of it can be found in a previous work of the authors concerning thequantum Hall e�ect14 and in15. The other original results will be written in a forthcomingpaper16.2. The Greenwood-Kubo FormulaFor simplicity we will consider the electron 
uid in a quasicrystal of physical dimension Dand assume that it can be represented as a gas of independent fermions on the quasilatticede�ned by the equilibrium positions of the ions. We will always assume that the sample,denoted by �, is large enough to consider its volume j�j as in�nite. We will denote by Hthe one-particle Hamiltonian and by ~X = (X1; : : : ; XD) the position operators. The currentoperator is then ~J = e[ ~X;H]=({�h). If the system is prepared in an equilibrium state at inversetemperature � with a chemical potential �, the thermal averaged density of an homogeneousobservable A is given by < A >�;�= limj�j!1 1j�jTr�(f�;�(H)A) , (2)where f�;�(E) is the Fermi distribution function. Clearly, at equilibrium, the average currentvanishes. To get a non-zero current we need to switch on an external electric �eld ~E. Forsimplicity, we assume that this �eld is uniform in space and periodic in time with pulsation !.We let therefore the time evolution of observables for t � 0 be governed by the HamiltonianH~E(t) = H + e~E(t) ~X. The actual current density at frequency ! is the time average ~j =limT!1 R T0 dt=T < ~J(t) >�;� e�{!t. We have proved in14 for ! = 0 the following result, validfor any frequency:Proposition: If H is bounded, the component of the current j parallel to ~E vanishes.This surprising result is actually due to the absence of dissipation mechanisms. To introducesome dissipation we have proposed to add to the Hamiltonian a term of the formHcoll = Xn2Z �(t� tn)Wn , (3)where the collision times tn are random in such a way that the �n = tn� tn�1 are independentrandom variables Poisson distributed with average �coll, and the collision operators Wn's areindependent random operators. We have also assumed that the distribution of the collisionoperators is such that �(H) = H if �(A) = E(e{WnAe�{Wn) and E represents the average overthe collision operators. This last property is needed if we want the collisions to enforce theequilibrium.Now the collision average of the current is not zero anymore. As ~E ! 0, the current isgiven by linear response theory, namely ~j = �̂ ~E where �̂ is the conductivity tensorKubo's formula in relaxation time approximation14:�̂a;b(!) = �e2�h limj�j!1 1j�jTr�  @bf�;�(H) 1(1� �)=�coll � LH � {!@aH! , (4)where we have set @aA = {[Xa; a] and LH(A) = {[H;A]=�h. In periodic media this formulayields the usual one17. 2



3. Spectral and Transport ExponentsLet f(") be a positive measurable function of the variable " 2 [0; 1]. According to6;15, wewill say that f(") � "� as "! 0 if� = supf 
 2 R j 9 0 < a � 1 such that Z a0 d""1+
 f(") < 1 g . (5)A similar de�nition holds for "!1. Let now � be a positive measure on the real line R. Wede�ne its local exponent ��(E) by R E+"E�" d�(E 0) � "��(E) as "! 0.Proposition: The following results hold 15;16:(i) The map E 7! ��(E) is borelian and 0 � ��(E) � 1 for �-almost all E's.(ii) If � is pure-point, then ��(E) = 0 �-almost surely. If � is absolutely continuous then��(E) = 1 �-almost surely. In particular, if 0 < ��(E) < 1 (�-almost surely) then � is singularcontinuous.(iii) For a complex number z, letG(z) = RR d�(E 0)(z�E 0)�1 be the Green function associated to�. Then the spectral exponent can be calculated by be the exponent de�ned by =mG(E+{") �"��(E)�1 as "! 0.We now consider the Hamiltonian H describing the one-particle motion of the electron
uid. By our hypothesis, its matrix elements <xjHjy> are indexed by the lattice sites of thequasicrystal. We let P� be the projection onto the eigenspace corresponding to energies in aninterval � � R. The di�usion exponent �x(�) will be de�ned as12 inf f 
 2 R j Z 11 dTT 1+
 Z T0 dtT <xjP�( ~X(t)� ~X)2P�jx> <1 g . (6)The di�usion exponent �x(E) is the in�mum of the �x(�)'s over all intervals containing E.On the other hand, given x in the lattice, the spectral measure relative to x is de�ned by�x de�ned by RR d�x(E)f(E) =< xjf(H)jx > for a continuous function f . If ��x(E) is thecorresponding exponent, for � a Borel subset of the real line, let �x(�) denote the essentialin�mum of the ��x(E)'s (E 2 �) obtained after cutting out from � a subset of zero �x�measureif necessary. If D is the dimension of physical space, we haveGuarneri's inequality6;7: �x(�) � D �x(�) .Note that this result gives interesting consequences. In 1D, anomalous di�usion producesautomatically a singular spectrum. However if D > 1, we may have coexistence of anomalousdi�usion and absolutely continuous spectrum. For indeed, absolutely continuous spectrumimplies �x(�) = 1, whereas Guarneri's bound permits �x(�) � 1=D. In 3D we may havesubdi�usive behavior with an absolutely continuous spectrum provided �x(�) � 1=3.An averaged di�usion exponent �(E) can be de�ned in much the same way by taking in(6) the space average over x and letting � shrink to E16.Let us now consider the conductivity given by the Kubo formula (4) in the limit for whichthe operator (1 � �) can be viewed as a real number. Then we de�ne the relaxation time by�rel = �coll=(1 � �). For a normal metal, Drude's formula implies that �̂a;a � �rel as �rel ! 1.Here, if EF is the Fermi level, we get in the limit of very low temperatureAnomalous Drude formula: �̂a;a � � 2�(EF )�1rel , as �rel !1 .3



This result shows that if the di�usion is ballistic, the Drude formula holds, if the system islocalized, then the conductivity vanishes as the dissipation disappears. If the quantum di�usionis normal, namely if �(EF ) = 1=2, the conductivity is �nite in the limit of vanishing dissipation.These last results are actually compatible with the experiments performed on quasicrystalsprovided we accept that in a 3D quasicrystal the quantum motion is subdi�usive. In thiscase the larger the relaxation time, the smaller is the conductivity. This mechanism has beenproposed by Mayou5 and Sire4 to explain why the conductivity decreases to zero at very lowtemperatures and why the inverse Mathiessen rule holds. More details will be given in16.4. AcknowledgementsPart of this work was presented as a seminar in les Houches summer school in 1994; J. B.would like to thank the organizers for giving him this opportunity. H. S.-B. would like to thankG. Elliott for inviting him to the Fields Institute where part of the work was completed.5. References1. H. Hiramoto, S. Abe, J. Phys. Soc. Japan 57, (1988), 230; and J. Phys. Soc. Japan 57,(1988), 1365.2. T. Geisel, R. Ketzmerick, G. Peschel, Phys. Rev. Lett. 66, (1991), 1651.3. B. Passaro, C. Sire, V.G. Benza, Phys. Rev. B46, (1992), 13751; and J. Non CrystallineSol. 153 &154, (1993), 420.4. C. Sire, in Lectures on quasicrystals, edited by F. Hippert, D. Gratias, Editions dePhysique, Les Ulis, (1994).5. D. Mayou, in Lectures on quasicrystals, edited by F. Hippert, D. Gratias, Editions dePhysique, Les Ulis, (1994).6. I. Guarneri, Europhys. Lett. 10, (1989), 95; and Europhys. Lett. 21, (1993), 729.7. J. M. Combes, Ames W.F., Harell E.M., Herod J.V. Eds, Academic Press, Boston(1993).8. B. Simon, Adv. Appl. Math. 3, (1982), 463.9. Y. Last, Commun. Math. Phys. 164, (1994), 421.10. J. Bellissard, B. Iochum, E. Scoppola, D. Testard, Comm. Math. Phys. 125, (1989),527.11. J. Bellissard, in Number Theory and Physics, pp.140-150, Les Houches Mars 89,Springer Proc. in Physics, vol.47, J.M. Luck, P. Moussa & M. Waldschmidt Eds., (1989).12. R. del Rio, S. Jitomirskaya, N. Makarov, B. Simon, Bull. AMS 31, No 2, (1994), 208.13. Y. Last, Quantum Dynamics and decomposition of singular continuous spectra, preprintCaltech April 95, work in progress.14. J. Bellissard, A. van Elst, H. Schulz-Baldes, J. Math. Phys. 35, (1994), 5373.4



15. J. X. Zhong, J. Bellissard, R. Mosseri, Green's function analysis of energy spectra scalingproperties, accepted in J. Phys. C (1995).16. H. Schulz-Baldes, J. Bellissard, Anomalous transport: transport theory revisited, inpreparation.17. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders Co, Philadelphia, 1976).

5


