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Low Energy Bands do not Contribute to Quantum
Hall Effect
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Abstract. Using non-commutative geometry and localization techniques we
prove rigorously a result of Tesanovic, Axel and Halperin, namely that low
energy bands in an ordered or slightly disordered 2D crystal submitted to a
uniform magnetic field, do not contribute to the Hall conductivity.

1. Introduction

We first consider an electron gas in a perfect two dimensional crystal submitted
to a perpendicular uniform magnetic field. If we neglect the Coulomb interaction
between pairs of electrons and the motion of ions in the crystal, we are led to
study the quantum motion of one charged particle (an electron or a hole) of mass
m, of charge + e, in a periodic potential μV(x) (here μ is a coupling constant) and
a uniform magnetic field B.

For μ = 0, the energy spectrum is given by the Landau levels En = hωc(n + 1/2)
where ωc is the cyclotron frequency eB/m and n = 0,1,2,... [1]. The gap between
£„_! and En will be called Gn. It is well known that whenever the Fermi level is
in Gn the quantum Hall conductance at zero temperature is quantized and equal
to ne2/h (h is the Planck constant). Both Gn and that quantization do survive for
μ > 0 small enough. This fact has been explained by recognizing that up to the
universal physical constant e2/h the Hall conductance at zero temperature is equal
to the Chern class of the eigenprojection PF of the Hamiltonian up to energies
smaller than or equal to the Fermi level [2-8].

In a recent paper, B. Halperin et al. [9] have investigated through a numerical
calculation how that scheme is modified as μ increases from zero to infinity for a
genuine periodic potential V. For μ small, Landau levels broaden into bands Bn

of width of order μ. Their structure is actually quite complicated for it is given in
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first approximation by the spectrum of a Harper-like equation [7, 10-12] and
is believed to be a Cantor set of zero Lebesgue measure at least if the crystal is
isotropic [13,14]. This has actually been proved rigorously for a generic set of
values of the magnetic field and in a certain number of examples [12, 15-18].

If μ increases, Halperin et al. found that eventually the bands Bn^l and Bn

cross each other for some value μ ~ of μ. On the other hand for μ > μ* > μ~ these
bands separate again in a way which may become complicated for high ns. The
quantum Hall conductance is found to vanish if the Fermi level belongs to Gπ for
μ > μ* . This is a clear indication that the crossings observed are not artefacts of
the numerical calculation because of the conservation laws valid for the quantum
Hall conductance [3, 4, 6, 7].

Our aim in this paper is to prove this result on a mathematically rigorous
ground. We will actually show that it still holds even if the crystal is not perfectly
periodic. Our only requirement is that the atoms be identical and separated by a
distance uniformly bounded from below with probability one. Then we prove that
for any energy Ec > 0 there is a coupling constant μc beyond which in the energy
range (— oo,£cμ

i/2] the energy spectrum splits into well separated bands Bnn,.
They are located around the energies En n, and have a width 4n>II, given by

£,,,„' = μll2h{(n + 1/2)0)! + (ri + l/2)ω2} + *„.„- + O(μ~ 1/2),

AΛtΛ, = 0{exp(- const. μ1/2)} π, n'eN,

where ω1? ω2 are the eigenvalues of the Hessian d2V/dxd\ of the potential at its
minimum, and eΛtΛ, is the contribution of the anharmonic perturbation at the
bottom well. If the potential is rotation invariant the energy bands look like

+ eΛtk + 0(μ~ 1/2).

In addition, we show that the eigenprojectors on each of these bands have zero
Chern class. In other words, the low lying energy bands at high coupling do not
contribute to the quantum Hall conductance.

The main reason for these results come from the remark that the limit μ -> oo
is nothing but the semiclassical limit with a Planck constant proportional to μ~ 1/2.
In that limit all potential wells get deeper and deeper as if the atoms were separated
from each other. The lowest energy levels are then given by the harmonic
approximation in two dimensions at lowest order in μ~ 1/2. If the atomic potential
is rotation invariant, each level has a degeneracy equal to n + 1 which may be
partially or totally broken at the next order due to anharmonic terms in the
potential. The band width is due to tunnelling between the wells and is therefore
at most of exponential order in μ1/2.

The vanishing of the Chern class is obtained by remarking that as μ -> oo
the eigenprojections on each of the previous bands do converge in norm to the
atomic eigenprojection for the crystal obtained with perfectly isolated atoms. This
latter projection is the direct sum of atomic projections having a vanishing Chern
class which expresses that the current cannot go through if the atoms are perfectly
isolated. By homotopy invariance, we conclude that the same is true at finite μ's
as long as the bands are not crossing.

We emphasize that the vanishing of the quantum Hall conductance need not
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imply the occurrence of localized states. Actually if the potential is periodic, using
a Landau gauge, the Hamiltonian becomes translation invariant in one direction
giving rise to states extended in that direction. Localization, when it occurs, is
mainly due to disorder which prevent Bragg's condition to hold for wave functions.

Technically we have chosen to use the semiclassical framework developped by
Briet-Combes-Duclos [19] rather than the pseudodifferential operator formalism
of Helffer-Sjδstrand [12, 20]. This is because the former approach is closer to the
operator algebra techniques previously used in proving the existence and the
quantization of plateaus for the quantum Hall conductance [5, 6]. It consists in
separating the wells by mean of a non-commutative partition of the unity and
comparing the total Hamiltonian of the system with the direct sum of individual
atomic Hamiltonians. To this end we use an algebraic endomorphism of the original
observable algebra into the algebra of the isolated atoms. It has the advantage of
not changing the formulae involved in proving the integrality of the Chern number.
It is actually remarkable that this formalism fits so well with the algebraic
framework.

The paper is organized as follows. In Sect. 2, we describe the model and our
results precisely. Section 3 is devoted to the description of an observable algebra
in order to define the conductance properly. In Sect. 4 we construct an individual
atomic system approximating the original one, and some related operator algebras
are introduced in Sect. 5. The vanishing of the Chern class projection is proved
in Sect. 6, and Sect. 7 gives the technical estimates required in Sect. 6. Several
appendices gives proofs of some well-known results which have not been actually
published.

2. Model and Main Results

We consider a two-dimensional Schrόdinger operator in a uniform magnetic field:

H= -(d/dx-\\(x))2 + μV(x) (2.1)

acting on tf = L2(R2), where the units are chosen such that mass of the particle
is 1/2, its electric charge is 1 and the Planck constant is 1. In (2.1),
d/d\ = ( d / d x ί 9 d / d x 2 ) is the gradient operator and A(x) = ( — Bx2/2, Bx^/2) is the
vector potential (thus d1A2~ d2A^= B). It is well-known that H is essentially
self-adjoint on ̂ (R2) [21].

We consider the potential V = Vω as a random process on a probability space
Ω. Ω can be considered as the set of impurity configurations, hence it is natural
to introduce an action of the translation group {Tα;aeR2} on Ω. We suppose
that this action leaves the probability measure P on Ω invariant, and acts
ergodically. We introduce the so-called "magnetic translation" operator [22]:

eίBxΛΛ/2ψ(x - a), ψetf, (2.2)

where x Λ y = xvy2 — x2yι, then the action Γa should satisfy the following
homogeneity condition:

aeR2, (2.3)



286 S. Nakamura and J. Bellissard

where Hω is the Hamiltonian with V=Vω corresponding to ωeΩ. We may consider
(2.3) as an assumption the action {TΛ} should satisfy. Note that (l/(a); aeR2}
form a non-commutative group [22]. Further we assume that V = Vω satisfies
almost surely the following assumptions:

Assumption A

(i) inf V(x) = 0, sup V(x) ^ C < oo .
xeR2 xeR2

(ii) There is a countable set of R2, { xπ; n = 1 , 2, . . . } such that | xπ — xm | ̂  d if n φ m
with d > 0.
(iii) There are ε > 0 and ̂  e#2({x| |x| < ε}) such that d > 2ε and V(xn + x) = ΉX)
if |x| <ε for all n.
(iv) 0 is the unique nondegenerate minimum o f ι Γ i n { x | | x | < ε } .
(v) If |xn - x| > ε for all n's then V(x) ^ δ > 0.

(vi) The constants C, d, ε and δ are independent of ωeΩ almost surely. O

In the previous framework one can actually identify Ω with the set of potential
Vω9 namely a set of bounded multiplication operators on Jtf (by Assumption A-(i)).
If we endow it with the weak topology its closure is a compact space. By ergodicity
of the translation group, we can actually identify Ω with the weak closure of the
set {Vω(. — a); aeR2} for one configuration ω of the impurity. Actually the
boundedness of V is not essential provided it is relatively bounded with respect
to the free Laplacian.

Example. Let us consider a periodic potential V with lattice of periods (Bravais
lattice) Γ. Then we can take Ω= R2/Γ and Γa is the natural action of R2 on Ω.
It is easy to check that (2.3) holds in this case. A typical example is:

V(x) = sin*! + sinx2 + 2, or Vω = sin(xi + ωj + sin(x2 + ω2) + 2 (2.4)

with xeR2, ωeβ= R2/2πZ2, and this is what Halperin et al. studied in [9]. O

Let F be the Fermi energy level, and let PF be the eigenprojection of the
Hamiltonian on the subset ( — oo,F] of energies, namely PF = £(_00fF)(H). A
"differential" d{ (i = 1, 2) is defined by:

l], '=1,2 (2.5)

for an operator A, where X = ( X ί 9 X 2 ) is the position operator and
[Λ, B] = AB — BA denotes the commutator (this is defined as a form on the domain
D(A)nD(\X\) at first and then extended to an operator. We will see later that this
is possible for a class of operators including PF, if F is in a gap of the spectrum).
The "trace per unit area" is defined by:

τ(Λ)= lim \Λ\-lΊτΛ(A\ (2.6)
|Λ|-»oo

where A is a square with center at the origin, and TrΛ is the usual trace in L2(Λ).
Note that if A = PF, τ(PF) is the integrated density of states at the energy F. Again
we will see later that τ(A) exist for a class of operators, and it is independent upon
the choice of ωeΩ iΐA = A(ω) satisfies the homogeneity condition (2.3) (see Sect. 3).
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Now, the Hall conductivity σH at zero temperature is defined by:

(2.7)

by virtue of Kubo's formula [23, 2, 4, 6, 8].
We defined the one-ion Hamiltonian as:

ft = - (d/dx - iA(x))2 + μi^(x) (2.8)

on L2(Bt\ Bε = {x; | x | < ε} with the Dirichlet boundary conditions. It is well-known
that h has a discrete spectrum. Moreover, if Ek(μ) is the kth eigenvalue of ft, it
admits an asymptotic expansion

Ek(μ)κ f C<AΓ<2+I>'*, /ι->oo (2.9)
i = 0

by the harmonic approximation at x = 0 [24, 20]. In particular, the top term C0

is the /cth lowest number in {(i + l/2)ω1 + ( j + l/2)ω2; i, j = 0, 1, 2, . . .}, where ω1? ω2

are the eigenvalues of the Hessian d2i^/dxdx of the potential at x = 0.
Our main result is:

Theorem 1. There exist α > 0 such that if a Fermi Energy F satisfies F ^ o(μ) and if

dist (F, σ(h)) ^ exp ( - αμ1/2), (2. 10)

then F lies in a gap of the spectrum of H almost surely, and the Hall conductivity
vanishes i.e. σH = 0, for sufficiently large μ. O

The former statement implies that the width of bands are at most of order
exp( — αμ1/2) if they correspond to simple eigenvalues of ft, and the latter that the
contribution of that band to the Hall conductivity is zero for large enough μ's.

3. Observable Algebra

In this section, we consider an algebra, called observable algebra, of operator-
valued functions on Ω satisfying the homogeneity condition:

ί/(aμ(ω)l/(a)* = ̂ (Γaω), ωeί2,aeR2, (3.1)

where A:Ω-+&(JP), following [5,6].
Ar first, let 00 be the set of functions on Ω x R2 continuous with compact

support. ΦQ forms a *-Algebra with the following operations:

,x)= f
R2

ω, -x)* (3.2)

for A9 BeΦQ. An element of 00 is represented as an operator-valued function on
ί2by:

πω(A)ψ(x)= f d2yA(T-*ω,y-x)eiBx*y'2ψ(y) (3.3)
R2

with ψeJίf. It is easy to see that πω is a ^representation of 00 for each ωeί2, i.e.
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(i) it is linear; (ii) nω(A) πω(B) = πω(AB):, (iii) πω(A)* = πω(A*). It is also easy to see
that πω(A) satisfies the homogeneity condition (3.1).

Remarks.!. The mapping ωeΩ-^πω(A) is strongly continuous by Lebesgue's
dominated convergence theorem.

Proposition 3.1. Let A = A(ω) be an operator-valued function on Ω, and suppose:
(i) A has an integral kernel K(ω;x, y);

(ii) K is continuous and K(ω\ x, y) = 0 if |x — y| ̂  C with C > 0;
(iii) A satisfies (3.1).
Then A is represented by an element of@Q, i.e. A(ω) = πω(A~) for some A~ in (90.
Moreover A ~~ (ω, x) = K(ω\ 0, x). O

Proof. By the homogeneity condition, K must satisfy:

K(T*ω; x, x + y) = K(ω; 0, y)eiBx Λ y/2. (3.4)

Hence we obtain:

K(ω;x,y)-K(Γ- χω;0,y-xX'β X Λ y / 2-^^(T- χω;0,y-x)β I 'β X Λ y / 2. (3.5)

Comparing this with (3.3) we conclude the proposition. O

A C*-norm || . || on ΘQ is defined by:

), (3.6)
ωeΩ

and & is the C*-Algebra obtained by completion of (90 with respect to this norm.
A trace τ on 00 is defined by:

τ(A)= J P(dω)A(ω,Q). (3.7)
ωeΩ

By BirkhofΓs mean ergodic theorem [25, 5] and the ergodicity of the action {Γa}
we get:

τ(A)= lim I Λ Γ 1 f d2aA(Γaω,0)= lim \A\^ΊτA(nω(A)) (3.8)
| / l |-»oo aeΛ |/l |-»oo

for almost all ωeΩ, where A is a cube with center at the origin. It is not too hard
to see that τ is extended to a trace on the C*-Algebra 0 [26]. We note that τ
given above is identified with τ defined by (2.6) up to the representation πω by
virtue of the identity (3.8). Hence if the trace norm:

= τ(|XMm (3.9)

is finite, then τ(A) is well-defined and finite: |τ(>4)| ̂  \\A |
A differential structure is defined by:

(3.10)

By easy calculation, we see that:

nω(diA} = dinω(A\ (3.11)

where dt on the right-hand side is defined by (2.5).
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To define the conductivity σH, we introduce the "Sobolev space" with respect
to the above differential structure. We set:

\ \ A \ \ 2

i = τ ( \ d 1 A \ 2 + \ d 2 A \ 2 ) = 4π2 J d2x J P(dω)|x|2M(ω,x)|2, (3.12)
xeR2 ωeΩ

for Ae&Q, and Jf * is the completion of 00 with respect to this norm in 0. Following
Connes [27] we introduce the "2-cocycle" τ2 by:

)τ(A0{d1A1d2A2-d2A1d1A2}), (3.13)

for Ae(9 and Al9A2eJfl.

Lemma 3.2. τ2 is a bounded form on (9 x J^fi x J^f1 namely we have:

| τ 2 μ 0 MιM2)l^( l/π)Mol lMιl l ιM2l l ι O (3.14)

Proof. By properties of trace [26, Chap. 5],

^ M o l l M i l l i M i l l i (3.15)
Similarly we have:

|τ(X0Mιδι^2)l^ Moll l l^ i H i M2l l ι . O (3.16)

Now we will show that PF is represented by an element of J4fl whenever F belongs
to a gap of the spectrum.

Proposition 3.3. Let A be an operator-valued function on Ω and suppose:
(i) A has a continuous integral kernel K(ω;x, y); (ii) there is an L1 (R2)- function /
such that |X(ω;x, y)| ^/(x — y) for a.e. ω, x, y; (iii) Λ satisfies the homogeneity
condition (3.1). Then A is represented by an element of Φ. O

Proof. As in the proof of Proposition 3.1, we can set:

,x), (3.17)

as a symbol corresponding to A. Clearly A ~ is continuous and A ~(ω)φ = πω(Λ
(see Eq. 3.3) for φe^. If we set:

Λ~(ω, x) - χ(fix)Λ ~(ω, x), (3.18)

where χeC£(R2), O^χ^l and # = 1 near 0, then A~eΘ0. Since:

, (3.19)
we have

\\A~ -<||g ||(1 -χ(εx))/(x) 11^,^0 as β^O, (3.20)

and this proves A~GΘ. O

Proposition 3.4. For ze (~] p(Hω\ (Hω — z)-1 is represented by an element of J^1.
ωeΩ

O
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Proof. We set HB = - (d/dx - iA(x))2, and

Rε(z) = (l + εHBΓ
1(Hω-z)~1(l + εHBΓ

1. (3.21)

By Proposition B.I and Lemmas B.7 in Appendix B, Rε(z) satisfies the assumptions
of Proposition 3.3, hence Rε(z)e@ (Proposition B.2). It is easy to see by functional
calculus that Rε(z) converges to (Hω — z)~l in norm as ε->0, hence (Hω — z)~ le(9
(Proposition B.2). Let rε(ω, x) be the symbol of the element of G corresponding to
Rε(z). We have by Lemma B.7:

l |rβ-(l-χ(5x)rβ | | ί^C J *-'»"(! -χ(δx))2d2x-+Q as <5-+0, (3.22)
xeR2

where χeΦQ is that in the proof of Proposition 3.3. This implies r ε ε J t f l . Since
rε(ω,x)-»r0(ω,x) pointwise if x^O, we can apply the dominated convergence
theorem to show:

l lr .-roll^O as ε->0, (3.23)

combining with Lemmas A.8 and B.7. Thus (Hω — z)"1 is included in the image
ofπJJf1). O

Corollary 3.5. // F belongs to a gap of (J σ(Hω\ then PF = E(-ODιF](H) is
represented by an element of JJ?1. O ωeβ

Combining Lemma 3.2 with Corollary 3.5, we know that the Hall conductivity
σH = τ2(PF,PF,PF) is well-defined whenever F belongs to a gap of the spectrum.

Remark 3.2. Because of the homogeneity condition (3.1) and the ergodicity of the
action {Ta} the spectrum of Hω is almost surely independent of ωeΩ [28]. O

4. Approximation by Individual Atomic Systems

In this section we fix V(x) = Vω(x\ ωeΩ, and we suppose that Assumption (A)
holds for F(x). Let Br(x) be the ball of radius r centered at x, i.e.
Br(x)= (yeR2; |y-x| <r}9 and let jeVo(Bε(0)) be a cut-off function such that
0 ̂  '(x) ̂  l,j(\) = 1 if |x| ^ e' and there is/e* °°(R2) such that (x)2 +/(x)2 = 1 for
xeR2, where ε' is an arbitrary fixed constant such that 0<ε / <ε. jn and j'n are
defined by jn(\)=j(\ — \n) and j'n(x) =/(x - xn) respectively. We also set

oo

70(x)= Y[ j'n(x) and the gauge transform 0Λ(x) = exp (i#x Λ xn/2). Domains Ωn,
n=l

n = 0, 1, 2, ... are defined by Ω0 = R2 and Ωn = Bε(xn) forn ^ 1. Identification maps
JΠ:L2(ί2Π)-»L2(R2) are defined by:

)^(x), for φeL2(Ωn), (4.1)

where 00(
χ)= 1» and

&)(x)= Σ UA)(x) for @φne@L2(Ωn). (4.2)
^O / n^O n^O n ^ O

We will denote 0 L2(Ωn) by J f 0 .
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Hamiltonian for the individual atomic systems is defined as follows: for n ̂  1,
hn is defined by:

\ on L2(Ωn\ (4.3)

with Dirichlet boundary conditions, where τ^n(x) = i^(\ - xn) and An(x) =
(- B(x2 -xΛt2)/29B(xi - xw,ι)/2). Let δ0 = Min(<5,inf (τT(x); xφBε,(V)}) where δ is
the constant in Assumptions (A), and we define ^0(

χ) = Max((50, K(x)).
h0 is defined by:

x), on L2(ΩQ\ (4.4)

and /f o on Jf 0 by // 0 = @ hn.
n^O

Lemma 4.1. J* is αw isometry from 2? to Jf 0. O

Proof. By definition we have:

J*ψ(x) =j0(x)ψ(x)θ θ fl.(x)*j.WΦ(x) (4-5)
n^ l

Hence

ί lΛ(χ)0MI2rf2χ,
xeR2

(4.6)
xeR 2 \ n g l /

because |7o(x)|2 = f) l7»l2 = Π 0 ~ IΛWI 2 ) = 1 - Σ lΛ(x)l2- O
π = 1 «= 1 w ^ l

J is a "non-commutative partition of the unity" and the error term of the
approximation is given by the following Lemma:

Lemma 4.2. J maps D(H0) into D(H) and:

(H-zΓl=J(HQ-zΓlJ*-(H-zΓlM(HQ-zΓlJ*> (4.7)

where M:= HJ — JH0eB(D(HQ),J^). M is decomposed as 0 mn with:

m. = HJΛ - Jnhn = - gn(x){(d/dx - iAn)(djJdx) + (djjdx)(d/dx - iAJ], (4.8)

where we set A0 = A(x). O

Lemma 4.2 follows by easy computation. Notice that the wπ's n ̂  1, are unitarily
equivalent up to a magnetic translation.

5. Operator Algebras and Connes's Formula

In this section, we review definitions and basic properties of some algebras we
consider. Again we fix K = Kω throughout this section.

(a) *-Algebras on Jt? = L2(R))2: αe£(L2(R2)) is an element of j/0 if it has an integral
kernel fc(x, y) which is bounded, continuous and such that fc(x, y) = O i f | x - y | ^ C
for some C > 0. Let Λ/ be the C*-Algebra generated by Λ/O.
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(b) Z2-graded representation: Following [27, 6], we introduce a trivially Z2-graded
algebra as follows: let ^f^ = ̂ +φ^_, where jf+ = ̂ f_ = ̂ f = L2(R2), and
define a degree operator G and a Dirac phase F by:

_Γ' Π ,.Γ« «Ί
LO -ij |_0 oj

with D = (*! + ix2)/|x| f°r xeR2. We identify stf with the set of diagonal elements
in B(je~): α->αΘαe£(^~). A "differentiaΓ d: B(tf~)-+B(3e~} is given by

dT = i{fT - ( - )de8<Γ>7T}, (5.2)

for T of homogeneous degree (i.e. GT = (- )deg(T)TG), and extended to B(J4? ~) by
linearity. Since the representation of si is included in the subalgebra of degree
zero, da = i[F, α] for αe<s/.
(c) p-summable Fredholm module: Let JS?%^~) be the Schatten (or trace) ideal of
order p (i.e. TeJίf'pf ~) whenever || T|| ^P:= {Tr(| r*T|p/2)}2/ί; < oo). An element
αej/ is called p-summable whenever da = i[F,α]e=£?ppf ~). A subalgebra si' ofjtf
is called p-summable if all its elements are p-summable. In particular, the set of
all p-summable elements of si forms a *-subalgebra of si which is denoted by
e£/(p). The representation of si on #P~ is called p-summable Fredholm module over
jaΛ

Lemma 5.1. Let P = £/(/f ) be an eigenprojection of H with I being an isolated
compact subset ofσ(H). Then P is p-summable for any p > 2. O

Lemma 5.1 will be proved in Appendix A.
(d) The Chern class: A 2-cocycle τ2 on <s/(3) is defined by:

T2(α0,α1;α2)= -(l^TrίGFCF.βolCF.αJCF.αJ}, (5.3)

for α0,α1,α2ej/(3), where Tr is the usual trace on Jf ~. The (second) Chern class
of projection ee<s/(3) is defined by

Ch (e) = τ2(e, e,e)=- 1/2 Tr (GF[F, e]3}. (5.4)

Ch( ) satisfies the following properties: (i) invariance: if e and /are equivalent
projections, namely if there is wej/(3) such that uu* = e and u*u=f then
Ch(e) = Ch(/); (ii) additivity: if e and /are orthogonal, namely if ef =fe = 0, then
Ch(e+/) = Ch(>) + Ch(/); (iϋ) Ch(e) is an integer for any projection ee^(3)

[29,27]
(e) Algebra on Jtf0: Analogously to (a) we define the algebras J?0 and $ on
tf o = 0 L2(Ωn) as follows: beB(3tf 0) is an element of J^0 if every matrix element

L2(Ωι)) has a uniformly bounded, continuous integral kernel fcί; (x,y)
such that feίj (x,y) = 0 whenever |x — y |^C for some (ϊj)-independent constant
C > 0. Let & be the C*-Algebra generated by ̂ 0

(f ) Z2-graded representation, p-summable fredholm module, Chern class on Ά\ the
trivially Z2-graded representation is constructed in exactly the same way as in (b)
on the space tf Q = ̂ Q + 0 Jf 0 _ , where 3? 0 + = Jtf 0 - = ̂  o = 0 L2(Ωn)-

n^O

p-summability for the Chern class is defined analogously on J^Q and satisfies the
same properties. In Particular, $(p) is the subalgebra of p-summable elements of
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J*, and τ2 is defined by (5.3) in much the same way. Analogously to Lemma 5.1
we obtain the following result (see Appendix A):

Lemma 5.2. The statements of Lemma 5.1 hold for H0 instead of H. O

Since J~*:= J* © J* is an isometry from J^7" to J^Q , and since J~* commutes with
both G and D, the next lemma follows immediately:

Lemma 5.3. Suppose αt e^(3),i = 0, 1,2, then J~*aίJ~€@(3) and:

J~*alJ~9J~*a2J~). (5.5)

In particular, for any projection eej/(3), J~*eJ~ is a projection of&(3) which satisfies
O

Finally we present Connes formula, which relates the 2-character τ2 defined by

(5.3) with the one defined by (3.13) [27, part I, Sect. 9]. Let us set X =

}
P(ί/ω){||α(ω, )< > 2 + ΊlL3/ 2 } 3 <oo for some ?/> 0.

ωeί2

Theorem 5.4 (Connes formula).
Let A0eX and A^Xr^J^^ i= 1,2. Then πω(Af) is 3-summable for a.e. ωeί2 and

τ2(Aθ9Al9A2) = J P(dω)τ2(πωμ0),πωμ1),πω(>i2)). O (5.6)
ωeβ

Corollary 5.5 [6,7]. //F belongs to a gap of \J σ(Hω\ the Hall conductance is
given by: ωeΩ

aH = Ch(PFJ for a.e. ωeΩ. O (5.7)

The Corollary follows from Theorem 5.4 and the properties that Ch (PFt<0) is almost
surely constant (see[5]). Theorem 5.5 will be proved in Appendix C. Now it is
sufficient to prove that Ch(PFω) = Q almost surely to show that the Hall
conductance vanishes.

6. Vanishing of the Chern Class of Eigenprojections

Here we consider the Chern class of certain eigenprojections of H and //0, and
we prove that they are zero if μ is large enough.

Let d be the Agmon distance between 0 and dBε,(Q) with respect to i^9 i.e.

d = inf J V(y(t)}ll2dy(t), where γ runs over the set of piece wise differentiable,
y o

continuous paths with y(0) = 0 and y(l)e<5£ε,(0). Let {Ek(μ)}k= l f _ ι N be a finite set
of eigenvalues of h satisfying the following conditions:

Assumption (b). For each fc, EΛ(μ)/μ->0 as μ-> oo. Moreover, for some η > 0,

dist({£fe(μ)}, σ(/ι)\{£k(μ)})^exp(-μ1/2(d-^)). O (6.1)

As noticed in Sect. 2, each eigenvalue has an asymptotic expansion μ1/4 as μ-> oo.
So the set of eigenvalues having the same leading terms satisfies assumption (B),
but our assumption includes cases with complicated degeneracy.
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For simplicity, we suppose σ(Λ)n[F_,F + ] = (Ek(μ)} with £_ = inf{£k(μ)},
E+ =sup{Ek(μ)}9 without loss of generality. Let β= l/2exp( — μ1/2(d — ή)\
/ = [£_- jS, E+ + β], P = £,(#)» PO = £/(H0). Our main technical results are:

Theorem 6.1. Suppose Assumptions (A). IfE = E(μ) satisfies E/μ ->> 0 as μ -» oo and

dist (E, σ(h)) ^ exp ( - /'2(d - η)) (6.2)

for some f/ > 0, then Eep(Hω)for almost all ωeΩ and all μ's large enough. O

In particular, we have E±eρ(Hω) almost surely.

Theorem 6.2. Suppose Assumptions (A) & (J3), and let P and P0 be defined as above.
Then for any η > 0, there is C > 0 such that:

||J*P./ - PO II ̂ Cexp(-μ1/2(d ->/)). O (6.3)

We will prove Theorems 6.1 and 6.2 in Sect. 7. We will consider the case if = i^ω

satisfying Assumptions (A), and we will drop the expression "almost surely."

Lemma 6.3. Ch(P) = Ch(P0) if μ is sufficiently large.

Proof. By Lemma 5.3, Ch(P) = Ch(J*PJ). Since || J*PJ - P0 1| < 1 for large μ by
Theorem 6.2, J*PJ and P0 are unitarily equivalent (Lemma D.I in Appendix D).
The invariance property of Ch( ) gives the result. O

Lemma 6.4. Ch (P0) = 0 if μ is sufficiently large. O

Proof. D leaves the decomposition of H0 invariant; using the additivity of Ch( ),
we have:

Ch(P0)= £ Ch(P0J, (6.4)
n ^ O

with P 0 w = £/(/ιn) and Ch( ) is defined on L2(Ωn) by the same equation. Since
[μ<50, oo ) => σ(/z0), we obtain P0>0 = 0 for large μ. Since P0>n is finite dimensional,
we easily get:

Tr (GF[F, P0,J
3) = 2{Tr (GP^FP^F) - Tr (GP0>/J)}, (6.5)

where Tr is the trace on L2(Ω n) 0 L2(Ωn). We denote by tr the trace on L2(Ωn). Then:

0,π) = tr(P0,M)-tr(P0)/l) = 0,

Tr (GP^FP^F) = tr (P0illD*P0t „!)) - tr (P0§llDP0illD*) = 0, (6.6)

This implies Ch(P0n) = 0, concluding the proof.

Proof of Theorem 2.1. At first we set a = d — η, with 0 < η < d. Then the set of
eigenvalues of h:{E^Ek< F} satisfies assumption (B), and by Theorem 6.1, F lies
in a gap of the spectrum of Hω almost surely (namely for ω's satisfying Assumptions
(A)). By Lemmas 6.3 and 6.4, Ch(PF) = 0 almost surely and σH = 0 now follows
from Corollary 5.5 of Connes formula. O

7. Proof of Theorems 6.1 and 6.2

In this section we fix ωeΩ satisfying Assumptions (A), but the estimates are uniform
in ω.
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Lemma 7.1. Suppose z = z(μ)eC satisfies as μ-> oo and for some η > 0:

|Re(z)|/μ->0, dist(z, σ(/ι)) ̂  exp( - μ1/2(d - η)). (7.1)

Then for any χeL°°(£ε(0)) with support included in βε(0)\Bε>(0),

|| χ(h -zΓ'll^Cμ-1; \\ χ(d/dx - iA)(A - z)~ 1 \\ ̂  Cμ~1/2. (7.3)

These estimates are due to Briet, Combes and Duclos [30]. They proved estimates
of this type in the case A = 0, but the proof works even in the presence of a
magnetic field. The next lemma is an easy consequence of the definition of h0:

Lemma 7.2. Suppose z = z(μ)eC satisfies |Re(z)|/μ->0 as μ->oo. Then for any
χeL°°(R2),

zΓΊl^Cμ- 1; (7.4)

zΓMl^Cμ-1 '2. 0 (7.5)

Now we estimate the error terms for the approximation of the resolvent in
Lemma 4.2.

Lemma 7.3. For z — z(μ)eC like in Lemma 7.1,

\\M(H0-zΓl\\^Cμ-1/2. 0 (7.6)

Proof. At first, we note

o - z)- 1 = © mn(hn -z)~\ (7.7)
n ^ O

by Lemma 4.2. From (4.8) and Lemma 7.2, it is easy to see that,

Hmoί/Zo-zΓMl^Cμ- 1 / 2 . (7.8)

On the other hand, since djjdx is supported by Bε(xn)\Bε.(xn) we can apply Lemma
7.1 to get a constant C > 0 such that for n > 1,

Um^-zΓMl^Cμ- 1 / 2 . (7.9)

Noting that the ranges of the mn's are mutually orthogonal for n ̂  1, because the
supports of the jn'

s are disjoint, we get:

X Re(m0(h0-zΓlφ0,mn(hn-zΓlφn)
n=l

Σ \\mn(hn-zYlφn\\^\\m0(h
=l

f oo ) 1/2 r

\ Σ l l^m 0 (Λo-^)~Voll 2 ί \
U=ι }

Σ llm^A-z)-1^!!2^ f H

=ι

1/2

, (7.10)



296 S. Nakamura and J. Bellissard

by Holder's inequality. Now using (7.8) and (7.9), we obtain

\-ι
n=l

2. o

1/2

(v.ii)

Lemma 7.4. For z = z(μ)eC like in Lemma 7.7, zep(H)for μ large enough, and

zΓlJ*Γl. (7.12)

Proof. (7.12) holds for Re(z) sufficiently negative, by Lemma 4.2, and it holds if
the right-hand side is well-defined by analyticity. Then Lemma 7.4 follows from
Lemma 7.3. Theorem 6.1 now follows from Lemma 7.4. O

Lemma 7.5. For z = z(μ)eC like in Lemma 7.7.,

Proof. Since J* Jm = 0 for n, m ̂  1 and n Φ m, we have

J*J - 1 = © (J*Jn - 1) + 0 J$JΠ +
n ^ O π ^ l w

Since ( ^ — 1) is supported in Bε(xn)\Bε>(xn), we have

J0

(7.13)

(7.14)

(7.15)

for n ̂  0 by Lemmas 7.1 and 7.2. We have

(7.16)

because supp(jn) are disjoint for n ̂  1. Noting that I ^ jJ0 I < 1, we obtain
V π i l " /

(7.17)

Similarly,

n ^ l n ^ l

^sup||j0j»(A.-zΓΊl Σ \\φa\\2^Cμ-2 Σ II4>JI2,

(7.18)

because again (j0jn) is supported in Bε(xn)\Be.(xn). Then (7.13) follows from
(7.14W7.181. O
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Proof of Theorem 6.2. Let {£k}k=1> >N be the set of eigenvalues in Assumptions
(A) and (B), and let D be a neighbourhood of {Ek}:

D = (j {zeC; |Re(z)-£fc| g £ Im(z)^jϊ}, (7.19)
fc

with β = l/2exp( - μ1/2(d - η)\ 0 < η < d, and we set Γ = dD. We notice that the
points on Γ satisfy uniformly. For sufficiently large μ, we have

j*pj = - l/(2iπ) J J*(tf - z)- 1 Jdz, (7.20)
r

and by (4.7),

*Γ W - (H0 - zΓ x }

+ { J*(H - z)- * J} { J*M(H0 - z)- x J* J}. (7.21)

Thus we obtain

(Ho-zr1}(l + LΓ1, (7.22)

with L = - J*M (H0 - z)~ 1 J*J. Substituting (7.22) to (7.20), we have

J*PJ = - l/(2iπ) J (#0 - z)- * (1 + L)~ x dz
r

- l/(2iπ) J (J*J(//0 - zΓlJ*J ~ Wo - zΓ '}(! + L)~ A dz
Γ

= PO - l/(2ίπ) J (f/o - z)- 1 {(1 + L)- ! - 1} dz
Γ

- l/(2iπ)f {(/V- IK/ίo-z)-1 + J*J((J*J-

(7.23)

The integrand of the second and the third terms are of order μ~1/2 and μ~ x by
Lemmas 7.3 and 7.5 respectively. On the other hand, there is a constant C > 0
uniform in μ, such that for large μ's the length of the path Γ is dominated by

\Γ\ ^ %β.#{ (eigenvalues of ft) ̂  F} ̂  CβF2 ^ 0(μ2)exp( - μ1/2(d - f/)). (7.24)
O

This complete the proof.

Appendix A. /7-Summability of Resolvents

We consider the Schrόdinger operator H — — (d/dx — iA(x))2 + V(x) on L2(R2) with
FeL°°(R2) and A = ( - Bx2/29 BxJ2). Then H is essentially self-adjoint on ̂ (R2)
[21, Chap. 10]. The purpose of this appendix is to prove the next proposition:

Proposition A.I. For zep(H\ (H — z)~l is a p-summable element of s^ for any p> 2.
Moreover the pth trace norm of[F,(H — z)-1] is locally bounded in p(H). O
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Proposition A.2. For zep(H0\ (H0 — z)"1 is a p-summable element of & for any
p> 2. Moreover the pth trace norm of [F, (H0 — z)~ *] is locally bounded in ρ(H). O

Lemma 5.1 and 5.2 are direct consequences of Propositions A.I and A.2
respectively. We notice that, as can be seen from the proof, the estimates depend
only upon || K||L» and dist(z,σ(/f)).

Proposition A.I follows from the next proposition and lemma:

Proposition A.3. For zep(H)9 (H — z)"1 has an integral kernel fc(x,y) such that for
any l g p < o o , supx ||fc(x, )H L p < oo, sup | | fc( ,y)||LP < oo. Moreover, fc(x,y) is

y
continuous on R4\{x = y} and for some α > 0, and for any δ > 0, there is a positive
constant Cδ such that \ fc(x, y)\^Cδ exp ( — α | x — y | ) whenever \ x — y | > δ. O

Lemma A.4. Let A be an integral operator with a kernel fc(x, y). // k satisfies:

sup| |<x- >*fc(x, )||L,<oo, (A.1)
x

with p>2, l/p + l/q — 1, m > 2/(p — 2), then A is p-summable. O

Here we have used the notation <x> = (1 + |x|2)1/2.

Proof of Lemma A.4. By definition, it is sufficient to show that the operator defined
by the integral kernel fe(x,y)(x/x| — y/|y|) belongs to the pih trace class. We set
y > 0 so that 2/mp < y < 1 — 2/p. By elementary calculations, if <x — y > g <x>y

then |x/|x |-y/|y| | gC<x>- ( 1-y ). Hence we have:

J d2y|/c(x,y)(x/|x|-y/|y|ψ
yeR2

, y)<χ - y >m k<χ - y >

/ v \ - ( l - y ) / γ \ - m y Ί « ( A Ύ\
\ x / > \ X / / \A 4J

Since (1 — γ)p > 2 and γmp > 2, we obtain

plq

xeR2 yeR2

d 2y|/c(x,y)(x/|x |-y/|y |)r ^C J d2x<x>~M i n ( ( 1-y ) p ' v m p )<oo.
xeR2

(A.3)

By Russo's Theorem [31], we conclude that the operator belongs to the pth trace
class. O

Proof of Proposition A.2. Since the operator [D, ] leaves the decomposition
0 L2(Ωn) invariant, if suffices to prove the statement for Λ0 and 0 hn respectively.

As for h0 we can apply Proposition A.I. The resolvent 0 (hn — z)~1 has an integral

kernel 0 fcn(x,y), x,yei2w, and K(x,y) = Σ Mx,y)can be considered as a kernel
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on R2 because the ί2n's are disjoints for n ̂  1 . Moreover | fcπ(x, y) | = | k(\ — xπ, y — yπ) | ,
where k is the integral kernel of (h — z)"1 on L2(Bε(0)). The operator (h — z)"1

actually maps tf^ l~η(Bε(ϋ)) into ^l~\B,(G)) and the Dirac ^-function belongs
to ̂ o * ~*W)) provided 0 < η ̂  1; thus ίe(x, Oe^f1 "̂ ε(0)), and hence fc(x, )el/
for any p < oo by the Sobolev embedding theorem. Thus K satisfies (A.I) because
K(x,y) = 0 whenever |x - y| > 2ε, and combining this with Lemma A.4, we finish
the proof. O

Now we prove Proposition A.3 by a series of lemmas (Lemmas A.5-A.7). We
notice that such results are proved in [32] in a generalized form, but we give the
proof here both for completeness and as a preparation for Appendix B. We may
assume x = 0 (or y = 0) after changing the gauge if necessary, and we consider
estimates near x = 0 (or y = 0) without loss of generality. We set

Lv = - (d/dx - iA(x))2 + 2v(d/dx - iA(x)) + K(x), (A.4)

for veC2.

Lemma A.5. Let φeD(Lv\ then φ is continuous and \φ(\)\ ^ C(||<£||2 + ||Lvφ||2)1/2

for xeR2. O

Proof. Since (d/dx — iA(x)) is infmitesimally H-bounded, D(LV) = D(H). As is easily
seen,

I φ(0)\ ^C(\\φ ||L2(β)2 + II Δφ ||.L2(β)2)
1/2 ^C(\\φ ||LW + II Hφ ||L2(B)2)

1/2, (A.5)

with B = {x; |x| g 1}. Since φ is locally J^2, it is Holder continuous. O

Lemma A.6. Let zep(Lv), then (Lv — z)~ * has an integral kernel fev(x, y) satisfying
(i) sup || fcv(x, •) \\LPW < oo, sup || fcv( , y) ||LP(B) < oo for any 1 ̂  p < oo, with

5 = ^(0).
(ii) fcv(x, y) is continuous if x ^ y and uniformly bounded on {(x, y); |x — y|>^}
for any δ > 0. O

Proof. Since the Dirac function at y, <5y belongs to tf ~ l~\ fcv( , y) = (Lv - z)~ 1δy

belongs to tf \~G

Ί for 0 < y ^ 1, hence kv(- , y)eLfoc for p < oo. Since the estimate
is uniform in y, we obtain the latter assertion of (i). The former is proved
similarly.

Let χ(x) be a smooth function such that χ = 0 near 0 and χ = 1 for |x| > δ > 0.
It is easy to see that (Lv — z)χ(Lv — z)~ 1δQeL2. This implies χ kv( ,0)eD(Lv), hence
the assertion (ii) follows from Lemma A.5, and the homogeneity property. O

Lemma A.7. Let zep(H\ then there is τ > 0 and for any y > 0, there is Cy > 0 such
that

|/c(x,y) |^C yexp(-τ|x-y|) if | x -y |£y . O (A.6)

Proof. Since Lv = eivxHe~iv'\

fcv(χ,y) = ̂ >(x"y)/c0(χ,y), (A.7)
whenever zep(Lv)nρ(H). For |v | small enough and zεp(H\ then zep(Lv) because
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(d/d\ — iA) is H -bounded. Thus combining this with Lemma A.6, we obtain

έ? |lm(v ( χ- y ) l |Mx>y)I^C y if | x-y |^y . (A.8)

Since (A.8) holds for any small enough v, this implies (A.6). O

We also need the following result in Sect. 3 (see also Eq. (2.5)):

Lemma A.8. For zep(H), [X,(// — z)"1] has a continuous integral kernel
(x — y)fc(x, y) and satisfies

|(x-y)/c(x,y)|^Cexp(-τ|x-y|) if x,yeR2. O (A.9)

Proof. It is easy to see that (x — y) fc(x, y) is the distribution kernel of [X, (H — z) ~ * ].
Moreover we have

= - {(H - zΓl(\d/djL + d/d\-x)(H - z)'ίδy}(x), (A.10)

hence ( -y)/c( ,y)e^f,2

0^(R2) which is contained in V(R2) for 0<<5<1.
Combining this with Lemma A.7, we obtain (A.9). O

Finally we note that the constant C in (A.9) depend only upon || V\\^x and
dist(z,σ(//)) as well as constants in other propositions.

Appendix B. Properties of Rε(z) = (1 + ε HB) ~1(Hω-zΓ1(l + *HB) ~ 1

In this appendix we consider some properties of

\ (B.I)

with ze P) p(Hω) and ε>0. Here HB= -(d/dx-iA(x))2, and we will set
ωeΩ

HQ=-d2/dx2.
First of all we will consider for Ω any closed subspace of the ball Ωm2 of L°°(R2)

with radius m2, endowed with the weak topology of L^R2). In particular
|| V\\ := sup || VJ|L<c g m2. Moreover by definition, for any element / of LJ(R2), thfc

ωeΛ

map ωeβ-> J Fω(x)/(x)</2xeC is continuous. For simplicity we will write V instead
oϊVω.

Proposition B.l. Rε(ω; z) has an integral kernel kε(ω; x, y) continuous with respect
to (ω; x, y) vanishing as \ x — y | -> oo . O

Proposition B.2. Rε(ω; z) converges to (Hω — z)~1asε->Q.In particular Rε(ω; z) and
(Hω — z)~ 1 are represented by elements of Θ. O

Before proving these propositions we will need the following results.

Lemma B.3. // R(z) < — m2, the integral kernel GB(\, y) of (HB — z)~ 1 is pointwise
dominated by the integral kernel G(\ — y) of (H0 + m2)" *. O

Lemma B.4. Let $ be a Banach space. Let D be an open set in the complex plane
C. Letf:zeD-^f(z)ES' be a complex analytic function. We suppose that there is a
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subset DO of D and a closed subspace $$ of $ such that (i) /(z)e^0 ι/zeD0, (ii) D0

is a unicity domain for D, i.e. any holomorphic function on D vanishing on D0, vanishes
on D. Thenf(z)eff0 for any zeJλ O

Proof. For Lemma B.3 see [32, Sect. B.I 3]. The proof of Lemma B.4 goes as
follows: suppose the conclusion fails. Then there is z0eD such that f(z0)φ$0. By
the Hahn-Banach theorem, there is a continuous linear form x on $ such that x
vanishes on <ί0, and that <x,/(z0)> = 1. But the mapz-><x,/(z)> is analytic on
D and vanishes on D0, a contradiction. O

Lemma B.5. //R<">(z) = (l + εHBr
i((HB-zΓlVωγ(HB-zΓl(l + eHBΓ

l and if
Re(z) < — m2, the integral kernel of R(n\z) satisfies the estimate (for some C > 0):

|R ( M )(z)(ω;x,y)|^C{| |K| |/m 2}nexp(-m|x-y|). O (B.2)

Proof. Using Lemmas B.2 & B.3, |Λ(Λ)(z)(ω;x,y)| is pointwise dominated by:

|Λ (n)(z)(ω;x,y)|^||F|r{(H0 + m2)-"-Hl+εH0)-2}(x-Λ (B.3)

leading immediately to (B.2).

Proof of Proposition B.I. 1) Let us assume first that Re(z)< — m2 — || V\\. If
|| V\\ < w2, (B.2) implies that the series £ R(n)(z)(ω;x, y) converges uniformly to

n ^ O

a function bounded by Cexp( — m\\ — y|). By definition the sum is nothing but
the integral kernel of Rε(ω\z). Now #(M)(z)(ω;x, y) is continuous in (ω x, y). For it
can be written as:

) - - - F(xn), (B.4)

where G#(x, y) is the integral kernel of (HB — z)~ 1(l + εHB)~ 1. Using the estimate
(B.3) and the dominated convergence theorem, we get continuity with respect to
(x, y) uniformly with respect to ωeΩ. On the other hand, for a fixed (x, y), the
integrand is the product of F(x1) K(xll) by a fixed L1 function. Thus it is
continuous with respect to V with the weak topology of L1.
2) Let us now suppose ze (°| p(Hω). Then

-Mx |(Hω-z)-1(l+ε/ίβ)-My>. (B.5)

Since sup ||(1 +εf/β)~ 1<5 x | |L2 < oo for ε>0, Rε(z) defines a complex analytic
X

function in Q p(Hω) with values in L°°(ί2 x R2 x R2). Moreover, for Re(z) < -
ωeΩ

m2 — \\V\\, we have shown that Rε(z) takes on values in the closed subspace
<$Q(Ω x R2 x R2) of continuous function vanishing as |x — y| tends to oo. By the
Lemma B.4, we conclude that indeed Rε(z)e^0(Ω x R2 x R2) for ze f| ρ(Hω). O

ωeΩ

Proof of Proposition B.2. From Lemma B.5 and the proof of Proposition B.I, Rε(z)
belongs to 0 for Re (z) < - m2 - \\ V \\ . Since 0 is a closed subspace of the Banach
space β(L2(R2)), Lemma B.4, shows that Rε(z) belongs to 0 for ze f j p(Hω). On

ωeΩ
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the other hand,

|| Rt(z) - R(z) || £ 2 1| (Hn - z)~ 1MB(1 + εHBΓ
 i II

g 2ε || (Hω -zΓl(Hω- VJ(l + sHB)~ 1 1| . (B.6)

Thus the left-hand side converges to zero as ε->0 concluding the proof of
Proposition B.2. O

Lemma B.6. There is τ > 0 and for any γ > 0, there is Cy > 0 such that uniformly
in ω and ε > 0:

| fc ε(ω;x,y)|^C yexp(-τ|x-y|) if | x -y |£y . O (B.7)

Proof. Let L(

V

0) be given by (A.4) with F= 0. Noting that

eiv'*Rε(z)e-iv'* = (1 + εL^Γ1^ - zΓ^l + fiL^Γ1, (B.8)

we can apply the argument of Lemmas A.5-A.7 for Rε analogously, to obtain (B.7)
independently of ε and ω. Analogously to Lemma A.8, we obtain:

Lemma B.7. For zep(H\ [X,Rε(z)] has a continuous integral kernel given by
(x — y)fcε(ω; x, y) which satisfies for some τ > 0 and every x, y:

|(x-y)fc£(ω;x,y)|^Cexp(-τ|x-y|), (B.9)

where C is independent of ε and ω. O

Appendix C. Proof of Connes Formula

Here we give a proof of Theorem 5.4. At first we note:

Lemma C.I. The map (AQ9 Aί,A2)—>τ2(πω(AQ), πωC4ι)» π

ω(^2)) ιs continuous from
Xx3 into Ll(Ω\ O

Proof. By Lemma A.4, the map A -> [F, πω(,4)] is bounded from X to
L3(ί2; JS?3(^ )). The lemma follows from the definition of the 2-cocycle τ2. O

Since 00 is dense in 0, X and Jf *, it suffices to show the formula for At in 00

by virtue of Lemmas 3.2 and C.I.

Lemma C.2. The Connes formula (5.6) holds for A{ in 00, i = 0, 1,2. O

Proof. By definition,

= -1/2 f d^o^x^
R6

-D(x2)*)(D(x2)-D(x0))-c.c.}

ι-|-Xι Λ X 2 + X 2 Λ X 0 ) / 2 (CD

where D(x) = (x1 + ix2)/|x|, D(x)* = (xt -ix2)/|x|, and c.c. means "complex
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conjugate." By a direct computation, we have

{D(x0)*(£(x0) _ D(Xl))(D(Xl)* - D(x2)*)(D(x2) - D(x0)) - c.c.}

= -2j8(x0-x1,x0)j8(x1-x2,x1)j5(x2-x0,x2), (C.2)

with β(x, y) = 1 - D(\)~lD(x - y)~ l. We perform the following change of variable
and then integrate over ω:

s = x0,s0 = x0 - Xi ,s x = Xl - x2, s2 = x2 - x0, ω' = Γ~sω; (C.3)

f P(dω)τ2(πω(A0\πω(A1\πω(A2))
ωeΩ

ωeΩ R6

x .-. x A0(ω', -SoMiCΓ oω', -slμ2(ΓSo+Slω/, -s2)eίBs°ΛSl/2. (C.4)

Here we integrate over the subspace {s0 + sx + s2 = 0}. These integrals are
absolutely convergent because they are compactly supported with respect to the
variables sf, and decay like <s>~3 in s. Using [see [27], Part I, Lemma 9.2]:

J d2sβ(s0,s)β(sl9s — sJ/f^jS — Sj — S2) = 2iπs0 Λ s1? (C.5)
R2

we obtain:

J P(dω}ϋ2(πω(A0)9πω(Al)9πn(A2))
ωeΩ

= f P(dω) f ^So^s^oίω', -s0),
R4

O

Appendix D. Equivalence of Projection in /7-Summable Subalgebras

Here we prove a criterion for equivalence of projections, which is well-known for
C*-Algebras, but we need if in the p-summable subalgebra

Lemma D.I. Let ̂  be a C*- Algebra with a Z2-graded representation, and let
be the subalgebra of p-summable elements of stf. Suppose that e and f are two
projection in <$/(p) such that \\e-f\\ < 1, then e and fare equivalent in s4(p\ O

Proof. We let {cn} be the coefficients of the Taylor expansion on (1 — X) ~1 / 2 =
X cnX\ and define (efe)~ll2'.= e+ £ cn(e-efe)n.lϊ we set u = (efeΓ1/2ef, then

W ^ O Λ ^ l

u satisfies u*u = f and uu* = e. It remains only to show that ue^(p\ By an easy
computation,

n ^ l f c = l

+ e + X cm(e - efeγF,en. (D.I)
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Noting that e — ef and ef are p-summable, we get:

n\cn\\\e-f\\n

> (D.2)
n£0

where || ||p denotes the pth trace norm on Jf. The right-hand side of (D.2) converges
because \\e — f\\ is smaller than 1 and the convergence radius of Σ n\cn\X" *s

one. Hence [F,u\e^(p\ O n>°
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