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Abstract. In this paper we consider operators H(~, x) defined on /2(Z) by 

H(~, x)~p(n) = E tmo ~-"(~, x)~p(n- m), 
ra~7Z 

where c~(ct, x) = (~, x -  ~), tm is in the algebra of bounded periodic functions on R2 
generated by the characteristic functions of the sets 

~b"{(~,x)eR2 [ 1 - ~ < x < ~  (mod 1)}. 

This class of hamiltonian includes the Kohmoto model numerically computed by 
Ostlund and Kim, where the potential is given by 

v=,x(n)=2Ztl_~,lt(x +n~),  n e Z ,  x, 2, c t ~ R  

(see [B.I.S.T.]). We prove that the spectrum (as a set) of H(~, x) varies continuously 
with respect to 0~ near each irrational, for any x. We also show that the various 

strong limits obtained as ~ converges to a rational number p describe either a 
q 

periodic medium or a periodic medium with a localized impurity. The correspond- 

ing spectrum has eigenvalues in the gaps and the right and left limits as ~ -P do 
q 

not coincide, for the Kohmoto model. The results are obtained through 
C*-algebra techniques. 

1. Introduction 

Let us consider the following discrete one dimensional Schrfdinger hamiltonian 
with quasiperiodic potential, acting on/2(~E) and given by 

H(ct, x, 2)~p(n) = ~p(n + 1) + lp(n - 1) + 2v=, x(n)~p(n), (1) 
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with: 

v~,~(n)  = Zt~ -~ ,  ~t( x + n00, 

where Zt~ -~, ~t is the characteristic function of the interval [1 - ~, 1 [ CT = [0,1 [, the 
numbers x and ~ are in T,  and 2 (the coupling constant) is in N. This model was 

considered first by Kadanoff, Kohmoto,  and Tang [K.K.T.], for ~ = { ( V ~ - I ) .  
They used a renormalization group analysis and transfer matrices to construct the 
energy spectrum and the wave functions. Later on, Ostlund and Kim [O.K.] gave 
a numerical algorithm to compute the spectrum for any rational value of ~. 
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Fig. 1. The energy E has been plotted as a function of ~ if it is in the spectrum of H(~, x, 2). The 
coupling constant 2 is 1 and x=0 

The beautiful fractal nature of the picture reflects the properties of the 
renormalization group. 

The model was interpreted by Luck and Petritis [L.P.] as describing the 
phonon spectra in a one dimensional quasicrystal. In this latter case, the cut and 
projection method based on a periodic two-dimensional structure gives rise to 
Eq. (1) where ~ is the irrational slope of a strip and x is the position of this strip. The 
fact that the potential is discontinuous is justified in some problems of 
quasicrystals: for instance, the spectrum of surface states of electrons on a crystal 
face with large Miller indices, and electrons on a dislocation the direction of which 
is incommensurate with the lattice periods. 

This model has also been related to the problem of Peierls instability for one 
dimensional chains. In this respect, the work by Machida-Nakano [M.N.], based 
upon a mean field approach to the Frrhl ich hamiltonian, gives rise to a one 
electron energy spectrum very much reminiscent of Fig. 1. This fact seems to 
indicate that the effective one electron hamiltonian belongs to the class of 
operators we consider in this paper. It is interesting to remark that ~ represents the 
product of the modulation frequency of the charge density wave by the period of 
the chain. Hence it can be modified by changing the charge carrier density. So 
appears as a physical parameter. The same is true for x which is related to phason 
modes if one takes into account the fluctuation of the phonon groundstates. 
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Model (1) can be also used for describing the quasisuperlattices grown 
according to a role given by the Fibonacci sequence whenever ct = �89 (V ~ - 1). Such a 
device leads to a number of interesting questions: computation of the electrical 
resistivity, optical transmission, effective impedance, Raman scattering from 
acoustic phonons, interface polariton modes, critical plasmons... [M.]. 
The aim of this paper is to give a mathematical explanation of the Ostlund-Kim 
spectrum (see Fig. 1). We shall especially address the following questions: 
- The numerical computations involved only rational values of ct. Is the picture 
relevant for irrational ct's? In other words, is the spectrum continuous in the 
vicinity of an irrational number? p 

- We can easily see from this figure that the spectrum is discontinuous at ~ = -, 
q 

where p, q e N*. In particular the right and left limits do not coincide and they both 

differ from the spectrum at -P. More precisely the difference is given by isolated 
q 

eigenvalues located in each gap. Is there a physical interpretation of this 
observation? 

The main result of this paper is Theorem 1 below according to which the 
spectrum is a continuous function of ~ in the vicinity of irrational values. This 
result actually applies to more general hamiltonians acting on 12(Z) as follows: 

H(~, x)~o(n) = Y. tm o 4)-"(~, x)~(n-- m), (2) 
m~Z 

where the t,,'s are in the subset defined below, of periodic bounded functions of 
period one. 

As a byproduct of the method we use here, we will get an explanation of the 
discontinuity of the spectrum at rational values of~. In particular we will show that 
isolated eigenvalues showing up in gaps of the right (left) limits of the spectrum 
near rational numbers come from a localized impurity appearing in the 
hamiltonian by taking a strong right (left) limit with respect to ~. 

The usual description of the hamiltonian (1) goes through the transfer matrix 
formulation [K.K.T., O.P.R.S.S., C., L.] and leads to the result that the spectrum is 
a Cantor set of zero Lebesgue measure for any irrational ~ and any 2 4= 0 [S., 
B.I.S.T.]. We will rather use a somewhat different approach (see however 
Theorem 7 below). The reason is that the transfer matrix method is essentially 
limited to nearest neighbour interactions, whereas many results still hold for long 
range interactions as well. 

Given H(~, x) like in (2), we introduce the unital C*-algebra d ,  generated by the 
family {T"H(ct, x)T*"ln e 7Z,}, where T is the translation operator. This is natural 
since the system described by H(~, x) is macroscopically translation invariant. 
Therefore, translating the origin in the lattice will give as good as description as the 
previous one (see [Be.] where the homogeneity in space is discussed). So d~ 
contains no more information than the energy and the homogeneity properties of 
the system. 

Our Theorem lcan be rephrased by proving that ~ d ~  is a continuous field of 
C*-algebras [D., T.] near any irrational number. 

To prove this, we will go one step further in the abstract setup. We will construct 
a "universal" algebra d which is, roughly speaking, the disjoint union y d , .  To 

0t 

define d ,  one remarks that H(~, x) is generated algebraically by two kinds of 
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operators: First of all, the translation operator T acting o n  12(~) as 

(T~p) (n) = ~p(n-- 1), 

and, second, the multiplication by the function Z given by 

x(~, x) = xt l-~,  it(x), 

or more precisely, by the functions v~,x(n)= ~(~, x + n~), x, ot~ ~ .  Actually, we get 

TzT* = go tk, (3) 
where ~b(0~, x) = (~, x -  ~). 

So we can rather consider the abelian unital C*-algebra ~ generated by the 
functions g. = g ~ ~b-" in /~ By Gelfand's theorem [D.], this is isomorphic to 
C(f2), the set of continuous functions on some compact Hausdorff space f2. The 
map q~ defines a *-automorphism on the algebra generated by the functions g,, and 
so can be extended as a homeomorphism of f2 which will be denoted also by q~. 

The C*-algebra d is nothing but the C*-crossed product of C(f2) by the group 
Z acting through ~b [P.]. Namely, every element of ~r can be approximated in 

N 
norm by finite sums Z f,,U", where f,, is in C(f2) and U is an abstract unitary 

m =  - N  

implementing ~b. t2 appears as a compactification of the set 

A = {(~,x) e1"21 ~ r  and xCZ~} 

endowed with the weakest topology making all the Z,'s continuous. 
One then remarks that the restriction of q~ to A does not change the value of the 

coordinate ~. So that if we define p as the map A , 1 I : = T \ Q ,  p(~,x)=~, then 
p -  a {~} is q~-invariant. We will show that p extends as a continuous function from f2 
onto 17. 

Given ~1I ,  let J~ be the closed two sided ideal generated by the sums 
ra=N 

Z f,,U", where the f,,'s vanish on p-~{~}. Then d ,  is the C*-quotient d / j , .  
?n ~ - - N  

We denote by q, the quotient mapping. 
As a corollary of the continuity of the C*-field 0 ~ d ,  at irrational numbers, if 

h = h* ~ d and if q,(h) is the representative of h in d , ,  the gap edges of the spectrum 
of q,(h) are continuous functions of ~. Then our construction will show that the 
topology of ~ coincides with the topology of 17 in the vicinity of any irrational 
number 0~, proving the main result (Theorem 1) in the first part of this paper. 

Unfortunately the constructed map p is not open, so it gives no information on 
the behaviour of the spectrum near a rational number. To overcome this difficulty 
we have explicitly described, in the second part of this paper, a compact Hausdorff 
space FDR and a continuous open map from t2 onto F. As a consequence of this, it 
is seen that the topology of f2 explains the qualitative nature of the discontinuities 
of the spectrum of H(ct, x) near the rational values of ~. Moreover, a point co in f2 
can be viewed as a limit point of a sequence (~., x.) in A. Correspondingly, one can 
construct an operator H(co) as a strong limit of H(ct,, x.). We will prove (Theorem 2) 

that if 0~.~ P- in the usual topology, the right and left limits exist for the spectrum. 
q 

This means that there are limit points co for which H(co) is a periodic operator of the 
type given in (1) perturbed by a localized impurity (Theorem 4 and its Corollary). 
H(co) admits a band spectrum and in addition a finite number ofeigenvalues in the 
gaps, as shown in Fig. 1. 



Continuity Properties of 1D Quasicrystals 357 

The paper is organized as follows. In Sect. 2 we describe precisely the results. 
Section 3 is devoted to a proof of Theorem 3 concerning an abstract continuity 
result in the algebraic set-up. A proof of Theorem 1 is given in Sect. 4 which 
concludes part one. Section 5 concerns the construction and the properties of the 
spaces f2 and A and the map p. It ends with a proof of Theorem 2. Some details on 
the spectrum around a rational number and the proof of its discontinuity at such a 
point for the Kohmoto  model are given in the last section. 

2. Notations and Main Results 

The spectrum (respectively the absolutely continuous part of the spectrum, the 
essential spectrum, the discrete spectrum) of a selfadjoint operator A will always 
be denoted by o-(A) [respectively aao(A), aes~(A), adi~,et~(A)]. 

We consider the following maps: ((~, x)~ I? 2) 

Xo( , x) = xtl- , it(x) {0 ,1} .  

These two maps are obviously related to model (1): Denoting by ;~,=Xo o ~b-", 
n e Z, the translates of Xo through q~n, we have 

Thus the map x~;~(oc, x) is right-continuous. 
Let ~ ( T  2) denote the C*-algebra of all complex valued bounded functions on 

T 2 with the norm given by the supremum and ~ the C*-subalgebra generated by 
the functions X~. 

Let (tm),,~Z be a family in ~ .  We define formally the hamiltonian H(oc, x) by 

H(~,x)= Z t . . . . .  T m, (4) 
m~Z 

where T is the shift on 12(Z), t . . . .  ~ is the multiplication by t= o ~b-n(=, x) and we 
assume that the t . . . .  x's are such that the sum converges in norm and defines a 
bounded selfadjoint operator. 

Definition 1. Let H(~, x) be as in (4). The total spectrum at 0~ of H is 

cry= U a(n(~,x)). 
x 

In this case, the total spectrum at each c~ coincides with the spectrum: 

Proposition 1. Let ~ e T and let H(c~, x) be as in (4). Then the spectrum of H(~, x) is 
independent of x and coincides with the total spectrum. 

Proof. With the notations of (4), 

Xo .... +l,~= TkZo.~.x T*k , x ~ [0, 1[, k ~ Z .  

Assume first �9 = P. H(~, x) and H(oc, 0) are unitarily equivalent for any x: It is easily 
q 

checked that vp/~,~(n)=vp/~,o(n) for a l ln~Z if e~ [O, ~I. Given x, there exists k~7Z 
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satisfying x + k P �9 I o, ~I. It follows that zo, p/q,x= TkZo,p/~.o T*k, and by extension 

to 8 ,  the claim is proved. 

Assume now that ~t r Q. Let x, y be in [0, 1 [. Then, there exists a sequence of 
integers nk such that O<X+nk~--y~O when k ~ .  The map x~tm(ct, x) being 
right-continuous, tm,,,y is the strong limit of t . . . .  ~+,~,=Tkt,,,,,xT *k. Thus 
tr(H(~, y)) is included in a(H(~, x)) ([R.S.] p. 290). 

A reasonable definition of the continuity property of the spectrum as a function 
of ~ is that the gap boundaries are continuous functions of ~: 

Definition 2. Let {27a}a be a family of subsets of R indexed by fle ]0,1]. This family 
is said to be outer-continuous (respectively left outer-continuous, right outer- 
continuous) at the point ~ �9  1] if for any closed interval F in ~ such that 
2 , n F  = ~ ,  there exists e > 0 such that ~ a n F  = ~ if fl �9 ] ~ - e ,  ~ + e[ (respectively 
/~e [~-~,~[,/~�9 E~,~+~[). 

Similarly it is said to be inner-continuous (respectively left inner-continuous, 
fight inner-continuous) at the point ~ �9 ]0,1] if, for any open interval 0 in R such 
that X,c~O =~ ~ ,  there exists e > 0 such that 2:~c~0 4= ~ whenever fle ] ~ - e ,  ~ + e[ 
(respectively fl �9 ] ~ -  e, ~], fl �9 [~t, ~ + e[). 

When the family is outer-continuous and inner-continuous (respectively left 
outer-continuous and left inner-continuous, respectively right outer-continuous 
and right inner-continuous), we simply say it is continuous (respectively left 
continuous, respectively fight continuous) and we write: 

2;, = lim Sp 
//--*, 

(respectively 2~-= ~>~-',lim 2~, respectively S~+= ,<~-.,lim ~p). 

The main result is: 

Theorem 1. Let H(~t,x) be as in (4). The map ~�9  [0, l [ -oo ,  is continuous at each 
irrational number. 

+ - exist at each rational Theorem 2. Let H(~, x) be of type (4). The sets ap/q and crp/q 
P 
q 

The proof of Theorem I uses the following Theorem 3. Let us introduce first 
some notation: 

Let f2 be Hausdorff compact metrizable spaces, ~b be a homeomorphism of f2 
and p be a continuous surjective map from t2 onto a compact space F such that 
p o t k =p. Denote by d the C*-crossed product C(12)x~7Z, of the complex valued 
continuous functions on t2 by the action of Z through r The map r is 
implemented by a unitary U in d .  For 09 in f2, we define the representation//~, of 
d by 1-l,o(f)Ip(n)=f((~-"og)~o(n) and 1-l,~(U)~p(n)=~o(n-1) when lpe 12(Z). For 
7 e F, let J~ denote the norm-closed ideal in d .  

Jr = {a e d I H~,(a) = 0, co e p -  x(T)}, 

and r/r the canonical map from d onto the quotient C*-algebra d r = d / J  r. 
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Definition 3. We say that co ~ f2 is p-isolated whenever there is an open set U in f2 
containing co, and a sequence ~n in F converging to ~ = p(og) such that U intersects 
none of the p -  1 {~n}. 

Note  that the set of p-isolated points is open in p-1{~}. 

Theorem 3. Let (t2,F,p) be as before and h=h* be in C(I2)• 
(i) The spectrum tr(r/v(h)) is outer-continuous at every point ~ in F. 

(ii) Let ~ in F be such that the fiber p-1{7 } contains no p-isolated points. Then the 
spectrum ~(r/7(h)) is inner-continuous at ~. 

This theorem is very close to Theorem 3.1 of IT.] and Theorem4 of I-Le.]. 
However, we do not require that the decomposition of the structure space of 
C(f2) • ~7Z, by means of r/v be Hausdorff (see Lemma 9 and Remarks 1). This is why 
p-isolated points may create discontinuities in the spectrum. 

As in the introduction, let ~ denote the abelian C*-algebra generated by the 
~'s. Let f2 denote the spectrum of ~ ,  so that ~ is identified with C(O), and consider 
the homeomorphism ~b of f2 corresponding to the translation (e, x) ~ T 2 ~(e ,  x -  e )  
through ~ .  Consider the crossed product d of ~ by 2E via the action ~. 

Proposition 2. (i) The set A = {(e, 2s le  ~ and x q~Ze} can be canonically 
identified (via evaluation) with a dense subset of f2. 

(ii, Thepoints(P q) , , p , r ~ { 0  .. . .  , q - 1 } ,  are also in t2. 

Proposition 3. Let H(e, x) be of type (4) and h be the element of C(I2) • JZ defined by 

h= • t ,U ' .  I f  ~(~ff~, then: 
mE Z  

O) H(e, x) = lI{~,~)(h) for any x ~ 7Ze. 
(ii) The total spectrum tr~ of H coincides with the spectrum of rl~(h ) in ~r 

(iii) //~p/,,,/q)(h) = H , q , p, r e {0 ....  , q -  1 }. 

Proposition 2 indicates that the "irrational points" of the square are in ~. More 
generally, every point in I "2 gives rise to at least one character. But for some points, 
one can get more than one and f2 appears as a non-locally trivial fiber bundle on 
T 2. This desingularization o f t  2 is at the origin of the continuity and discontinuity 
properties of the map e ~ ~ .  For instance, when e r II~, x = me e Ze, there are two 
characters corresponding to the point (e, x) in I" 2, representing the right and left 
limits as x converges to me. More complicated is the situation where e is a rational 

_ r 
number p and x =  - for r e  {0, . . . , q -1} .  Here, three possibilities for e coexist, 

q q 

P, P - 0 and P- + 0, where +_ 0 refers to the right and left limits. The first case gives 
q q  q 
rise to the usual periodic hamiltonian, the spectrum of which contains q bands. The 
two other cases correspond to periodic operators with an impurity producing 
eigenvalues in the gaps. This explains, first, the discontinuity of the spectrum at 
each rational e and, second, the shape of the spectrum in [O.K.]. More precisely, 

given , , we define two elements of t2 by a~j,• = , q,j, _ , where j ~ 7Z refers 

to the wedge bounded by two lines with integral slope passing through (P  q )  T h i s ,  . 
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character is the limit of points converging to (P, q)  within the wedge, respectively 

from the right (+)  and from the left(-) .  

Theorem 4. Let h = h* ~ ~r = C(12) • ~,Z. 
(i) Ho, j, ~ (h) converges strongly to the q-periodic operator II~p/q,,/q)(h) as j tends to 
- [ - 0 0 .  

(ii) a(Ho,~, ~(h))3 a(ll~p/q,,/q)(h)) and 

adi~r ~ (h)) = a(II0,~, �9 (h))ka(ntp/~ ,~/q)(h)). 

Corollary 1. Let H(a, x) be of type (4) and h E ~ be the associated operator. Then 
/ \ 

11o, ~(h) is equal to S*~H (P-, r_] S• modulo a finite rank operator, where S+ is a J, \ q  q,] 

partial isometry associated to the impurity domain of  I-lo, j. ~ (h). Moreover, 
+ _ 

av/a -- a(l-l(v/q, o, o, +)(h)) 
and 

aess(H0,j ,~(h))=aa,(H0,j .~(h))=a(H(P,q))  �9 

Since the size of the impurity domains for//t~/q, o, 0. +)(h) and lItp/a, o, o,- )(h) are 
different, the spectra a~/a and a~q generally differ from each other. More precisely: 

Theorem 7. Let H(a,x) be of  type (1) and h~ ~r be the associated operator. Then: 

adiscrete (11(P/q, 0, O, -)(h)) 4: a d i s c r e t e ( 1 1 ( p / q  ' O, O, + ) ( h ) ) .  

3. The Abstract Continuity Theorem 

Let C(Y2) be the C*-algebra of continuous functions on a compact metrizable space 
O. Let ~b be a homeomorphism of 12 and d = C(I2) x ~Z be the C*-algebra defined 
as the crossed product of C(Q) by the group Z acting on C(O) by ~b. This action is 
implemented by a unitary U in ~r We consider the dense subalgebra do  whose 
elements are of the form 

N 
a= ~ an Un, 

n = - N  

where a n ~ C(f2). 
To each co ~ f2 corresponds a representation/10, of ~1 on lz(z) defined on the 

generators by 

{ H~,(f) is the multiplication by 11~,(f)(n)= f(dp-nco) 

II,o(U) = T.  

By definition of the crossed product [P.], the map 

a e d ~ @~ ~ ~/-/0,(a) 

is an isometry and co ~ O~Fl0,(a) is strongly continuous for a ~ ~ .  
It is well known that the torus T (the dual group of Z) acts by automorphisms Ot 

on ~1 (the "dual action" on the crossed product): Vt ~ T,  V f  E C(O) 

Qt(f) = f ,  Qt(U) = exp (i2zct)U. 



Continuity Properties of 1D Quasicrystals 361 

This gives (a E d )  

Fl,o(Qt(a)) = Vflo,(a) Vt* , (5) 

where (V~p) (n) = exp(i2rmt)~p(n), ~p ~ 12(Z). 
Given a in ,d, we now want to construct an explicit sequence (aN)~r of elements 

in ~o,  converging in norm to a. Let g be in LI(X) and let 

qg(a)= ~ g(t)Qt(a)dt 
t e'll" 

(Bochner integral). Qg is a continuous linear operator on d with norm less than the 
E-norm of g. Taking a sequence {gN}N such that gN>O, I[gNllL, = 1 and, for any 
~>0, 

lim (i,1~>~ g~(t)dt) = 0 ,  

we have that aN = 0 g,,(a) converges in norm to a. If, moreover, the gN's are Fourier 
transforms of functions with compact support, then eg,,(a) belongs to ~r 

The Space of Orbits. Let us assume that there exists a continuous surjective map p 
from g2 onto a compact space F such that p o ~b = p. 

We introduce for any y ~ F, a ~ ~r the seminorm 

Ilall~= sup II/-L,(a)[I. 
w e  p -  t (~)  

Clearly, ]] a ]] ~ < ]] a]l. The set s = {a ~ d ] ]1 a H ~ = 0} is a closed two sided ideal in ~ .  
We define the quotient C*-algebra ~ = ~ / J ~  with the canonical surjective 
morphism ~/r from d onto d r. Using (5) we get Qt(J~)=Jr, Vy ~ F, so by extension 
Qo(Jr) = Jr, Vg ~ E(T). This implies: 

Lemma 1. J / ~ o  is dense in J~. 

The following lemma is a generalization of a result of Elliott [E.]. 

I, emma 2. Let a ~ J  r. Then lira II~/#(a)ll =0.  

Proof. We may assume that a ~ J r t ~ z z ,  tr o because Jrn~tCo is dense in Jr and 
n = N  

Ilallr < Ilall. So a =  E an U~, where a,~C(f2). Using 
n = - -3 /  

an= ~ Qt(U-"a)dt 
t ~ T  

it follows that a n E J~C(O) .  

Since IIHo,(a)ll < E [IH~,(an)ll, we may suppose that aeJrc~C(I2 ). So IIo,(a) is 
n =  - - N  

a diagonal operator in the canonical basis of/2(Z) and a(e~)= 0, Wo ~ p-~(y). 
Let us assume that sup la(co)l does not tend to zero when # tends to ~. There 

o ~ e p -  1(#) 

exist c > 0  and a sequence {COk} k in f2 such that p(Ogk)~ ~ and la(a~k) I > c. O being 
metrizable and compact, there is a convergent subsequence, also denoted by ~o k, 
with the same properties. Let co denote its limit in O. Thus la(o~)l > c and p(co) = y, a 
contradiction. Moreover, for any ~o ~ p -  1(#), a ~ C(O), 

II/-/o,(a)l[< sup la(co')l. 
r  t (#)  

This gives the result. 
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Proof of Theorem 3. Let F be a closed interval in R such that a(rl~(h)c~F = ~ .  By 
Urysohn's lemma there exists a continuous function g with 0 < g < 1, equal to one 
on F and zero on a(rl~(h)). Thus, g(h) e ~ and qr(g(h)) = 0. By Lemma 2, there is e > 0 
such that if Ifl-71 < e then Ilgff/p(h))ll = II rh~(g(h))[I < 1/2. Assuming tr(rltj(h))c~F ~ 
for such fl, we get a contradiction since g equals one on F. This proves the outer- 
continuity. 

We claim that for 7 ~ F, 

tr(~/r(h)) = m a(Flo,(h)). (6) 
o~ep- 1(~,) 

In fact, for a in ~r q~(a) = 0 if and only if Fl,o(a) --- 0 for all co e p - 1(7 ). [Recall that a 
real E is not in the spectrum of a selfadjoint bounded operator A if and only if there 
exists a continuous function g on R satisfying 0 < g  < 1, g(E)= 1 and g(A)=0.] 

Now let 7 be as in (ii) and 0 be an open interval in R such that Oc~a(rlr(h)) ~: ~ .  
By (6) there exists co ~ p-1(7 ) such that Oc~a(Flo,(h))~ ~ .  Since p-1(7) contains no 
p-isolated points, for any open set ~ containing co, and any sequence 7, converging 
to 7, the fibers p-  1(7,) (or a subsequence) meet ~ for large n. Suppose that there is a 
sequence 7, converging to 7 such that Ontr(q~,(h))=~. Then, there exists a 
sequence (.o n converging to co with Oc~a(II~,.(h))= ~ for all n. Since the map co e f2 
~II,o(a) is strongly continuous, it follows that Ona(Flo,(h))= ~ [R.S., p. 2901 and 
we get a contradiction. 

4. Proof of Theorem 1 

In this section we describe partially the spectrum (also called the character space) 
of the C*-algebra generated by H(ct, x) and its translates, using a geometrical 
partition of •2. Actually, the knowledge of a dense subset is sufficient for proving 
Theorem 1. 

Let H(ct, x) be of type (4). 

Lemma 3. I f  [ ] denotes the integer part, then for all n in Z, 

z.(~, x) = [x + (n + 1)~] - [x + n~]. 

Proof. We have 

Z.(~, x) = 1 ~ 1 - ~ < (x + n~) -  [x + n~] < 1. 

r  such that 1 - ~ < ( x + n a ) - m <  1. 

r ~ Z such that (x+n~)<m+ 1 <x+(n+ 1)a. 

Moreover, [x + (n + 1)ct] -- Ix + net] e {0, 1}. Actually, 

O<[x +(n+ l)ct]-[x +nctJ< x +na + a - [ x  +na] 
={x+n~} + ~ < 2 ,  

where { } is the fractional part. 
On the other hand, 

[x +(n + 1)~3 - [x + n~] = 1 

r such that x + n ~ < k < x + ( n + l ) ~ .  

Now let us consider the geometry on 17 2 determined by the generators of ~ .  
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Definition 4. A band in '~2 is a set of the form 

T.,k = A.,k/A.,k + l , 

where A..k is a half-plane in I" 2, 

A..k = {(~,x) ~N2 [ - n a  + k < x } n T  2 , 

and (n, k) ~ Z 2. 

The interest of this definition stems from the following 

Lemma 4. Let a..k (respectively Q..k) denote the characteristic function o f  T.. k 
(respectively A.,k).  Then ~ is generated by the a.,k'S or by the Q.,k's. 

Proof  a.,k (respectively Q.,k) can be expressed as a finite linear combination of Q.,k 
(respectively a.,k) and it is sufficient to prove the statement concerning the Q.,k'S. A 
typical generator of ~ is of the form (Lemma 3) 

Z.(a, x) = [x + (n + 1)a] - [x + na]. 

Notice that this is equivalent to 
1'1--1 

[x + na] = • Zk(~, x). 
k=0 

So ~ is generated by the functions f . : (o~,x)-- .[x+ noe], n ~ Z .  For n>0 ,  such 
functions are valued in {0 ..... n}. Let P..k be a polynomial of degree n + 1 such that 
for m ~ {0, ..., n}, 

P. ,k(m)=l if k > m ,  

P.,k(m)=0 if k < m .  

Thus, e.,k([X + n~]) e {0, 1} and 

en, k([X + nCt])= 1 r k <= [x + na] ,*~ - na + k < x . 

It follows that Pn,k(f.)=O.,k is in N. 
The case n < 0 is similar. 
It is immediate to check that 

+ o o  

[x + no~] = 2 ka..k(a, x) ,  
k =  - o o  

where only a finite number of terms are not zero in the sum. This proves the 
assertion. 

Let ~- be the smallest set of subsets o f t  2 containing all the bands Tn,k, which is 
stable under taking finite intersections, finite unions and complements. 

The T.,k'S give a partition of T 2 by lines 

D . =  {(~, na)~T2 [ ~ ~ [0, 1 [}, n~2~. 

Here the lines are taken modulo 1. If ~ is the set of such lines, we remark first that 

( P , x ) ~ x =  -rq for some r~{0 ..... q - l } .  
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IWe use that always defines an irreducible fraction so that 
p 

the convention there 
q 

is a unique couple (p', q') such that 1 < q' < q -  1, p' ~ Z and pq' = 1 + qp'. Actually, 

glvenp, q, rwe ge t ( P ,  q l ~ D n w i t h n = r q ' , w h e r e q ' i s t h e i n v e r s e o f p m o d u l o q ; t h e  

converse is immediate.J 

There are many lines passing through the point (P , namely, 

and conversely, all lines passing through that point are of the form D~,+j~. 
Finally we note that if (~, x) ~ ~ for ~ ~ Q, then (a, x) ~ D, for a unique n ~ Z. In 

particular, the partition o f t  2 defined by ~ is given by polygons whose vertices are 

of the form (P, q). These polygons are the atoms of the collection . .  In particular, 

every element of J has a nonempty interior. Note that Xr is a projection of g for 
any Te  F .  

In the following figure some lines passing through (-~, �89 are drawn. 

Fig. 2 

~ ) 8  

~ 
D_ 1 

D. 4 

- 7  

It will be useful to define the set 

/p/~,r = {~} X [q, [~ '~  [ " 

Notice that for T~ ~d", either T contains Ip/~,r or Tnlp/~,r= ~ .  
Recall that Q is defined as the set of characters of ~.  Then we get: 

Lemma 5. Given e > 0 and co ~ Q, there exists a finite partition of  T 2 by bands ( Ti)~ I 
in ~- satisfying: 
- The diameter of  the first  projection of  T i is less than e for all i (such bands will be 
called e-bands). 
- There is a unique j in I such that 09(ZT)= 1. 
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2 
Proof Let us take n > -. { T_ n, k] --n ~ k < 0} is a partition o f t  2 by e-bands. Since 

e 

k = 0  

Z f f - n , k  = ~  , 
k= - n  

there is ko such that C0(a-n, ko)#0, a-n, ko being a projection in ~ ,  it follows that 
co(tr_n,ko ) = 1 and therefore og(a_n.k)=0 if k #  ko. 

Let 8o  be the algebra made of finite linear combinations of finite products of X,. 
Then ~(~2) 3 ~o and 

Lemma 6. I f  A = {(a, x) E T 2 [ a q~ Q and x q~ 71a}, then for any f in 8 ,  

Ilfll = sup If(a,x)l. 
(a,x)eA 

Proof The equality is satisfied when f is in 80. Let now f in 8 and a sequence 
{f,}, in 8o  be such that f ~ f  For (a,x)eTff 2, 

Thus, 

Since 

If(a, x)l _< If(a, x ) -  f,(a, x)l + IL(a, x)l. 

Ilfll = sup I f ( a , x ) l ~ l l f - f n l l +  sup If~(a,x)l. 
(~t, x) eT2 (a, x)~T2 

IL(a,x)l = sup IL(a,x)l 
(e,x)~a 

_--< sup I(s -- f )  (a, x)l 
(a, x)E A 

+ sup If(a,x)[, 
(a,x)~A 

sup 
(a, x) ~ 'r2 

it follows that 

H f l l < 2 l l f - f ,  ll+ 

and the lemma is proved. 

sup If(~,x)l, 
(~,x)~A 

8 is an abelian C*-algebra with unit. Thus, 8 is identified with C(t2(8)), where 
~2(8) is a compact metrizable space. By the Gelfand transform, the set A is 
embedded in t2(~). 

Proof of Proposition 2. (i) Let co be in f2(8) but not in the closure of A. By 
Urysohn's lemma, there exists a non zero f in 8 with values 1 on co and 0 on A. 
This contradicts Lemma 6. 
(ii) follows from the next lemma. 

For t~ ~ 0(8), we define 

o % =  { r  ~ J I o~(zT) = 1}. 

Since co is a homomorphism, ~,o is a filter on ~-- and even an ultrafilter because T or 
its complement T c is in ~o, for any T in ~--. Let 

S(co) = c~{T I T~ ~.,},  

where T is the closure of T in I" 2 for the usual topology. S(og) is not empty because 
the family { T I T e ~.,} has the finite intersection property and the T's are closed 
subsets of the compact set I? 2. 
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Lemma 7. S is a map f rom 0 ( ~ )  into the subsets o f  "]~2 with the following properties. 
(i) Let  co ~ ~ (~ ) .  I f  S(o~) contains more than one point then 

S(~o) = Iv~q, r for  some r ~ {0 . . . .  , q -  1}. 

(ii) S coincides on A with the inverse o f  the Gelfand transform. 
(iii) S(t2(~)) is the union o f  the following sets: 

U {(~, x) l a r Q}, 

pEN, qeN*,re{O ..... q -  i} 

U Iv/q.," 
pelq.,qeN*,r~{O ... . .  q -  I} 

Proo f  (i) Let (~, x), (s x') be two different points of S(co). 
(a) If �9 =k ~', there exists a line in ~ which separates these two points. Thus there is 
T ~ 5  r such that  ( a , x ) E T  and (s162 If T ~ o ,  then (~t',x')r T,, and thus 
(~', x ')r  S(co). If T r  ~,o, then T ~ is in ~-,o and (~, x)r T -z, so we obtain again a 
contradiction. 
(b) If ~ = a' r ~ ,  the same situation occurs. The same is true when ct = ~' = P- and 
x, x' are not  in the same segment Ip/~,,. e 

(c) The last case is a = ct' = -p- and x, x '  ~ Iv/q,,. For  each T in : ,o  (a, x) and (~, x') are 

in T,, so by construction T contains Iv/~, ,. Since there are no lines between , 

and \ q  ~ - - /  so also does S(co). By (a), S(co) contains x [0, 1[. By (b), 

S (  (.O ) = Iv~q, r" 

Clearly if c~ r ~, S(co) is a point. 
(ii) Let o~ = (~, a) e A. For each T in :,~, (~, x) is in the interior of T, so (a, x) ~ S(~). 
Now apply (i). 

(iii) S(O(~)) ~ U {(o~, x)}" 
x~"F 

Let e r Q. The map 
o ~ : Z r ~ o  ~ lim Zr (~ , ka+e) ,  

O<e~O 

where k e Z defines a character on the algebra ~o.  Its (unique) extension to the 
closure ~ is in ~. It is easily checked that  if T e ~ then (a, k~) e T and thus S(co) 
= (~, k~) by (i). 

pEN,  qeN*,r~{O ..... q -  1} 

Given p, q, r, consider the extension to ~ of the character 

O) : ZT ~ 0  ''-> lira Z T  + e , - + r q ' e ,  
o<e~o q 

where q' is the inverse of p modulo  q (pq' = 1 + p'q with p' ~ 7Z). If T r ~o ,  , e 

and thus S(co) contains (P, q).  The set 

T = A,r _ re n (A~q, + ~, _ ~v" - p)c 
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isin  ,Lemma 4, = d  in  act in by  e nition of o r  )isnot 

in On app,yin,,i, is reduced,o 

p~N, qeN*,re{O ..... q -  i} 

For ~ ~]0, it, we define (e, r +'~] as the extension of the character 
\ q  q / 

T and T contains x a' by construction. Hence 

S(co) = Ira, r, on using (i) again. 

f2(~) is a compact metrizable (since ~ is separable) space for the a(~*, ~)- 
topology. Indeed this topology is equivalent to a natural topology associated to 
the family 3--. For  co ~ f2(~) and T~ ~ ,  define V T = {cote ~e~(~) I T~ ~-~,}. The family 
U(co) = { VT I T ~ fro,} satisfies the axioms for a fundamental basis of neighborhoods 
of co. Actually 

N V T i = V  ,+,,~..., Ti 
i e { l  . . . . .  n} 

when T/e ~,o and if co' e VT e ~(co), VT e ~(co'). The J-- topology defined this way 
is Hausdorff for when co and co' are different points of t2(~), there exists T e  
satisfying T e ~ ,  and TCe~, , .  Thus coe Vr, co'~ VTc and VTnVTo=~.  

Lemma 8. The ~q--topology and the tr(~*, ~)-topology are equivalent on t2(~). 

Proof. Let {coe}~ be a net in O(~), g--converging to co. To prove that it 
a(~*, ~)-converges, it is sufficient to check that co~(ZT)'-*co(Zr) for any T e  ~-o,. By 
hypothesis, for Te~ ,o  there exists flo such that if fl>flo, then cope Vr. Hence 
T~ ~ ' a  and cofl(ZT) "~-- 1 -"~1 : co(ZT)" 

Conversely, let co be the a (~  , ~)-limit of a net {co~}a included in f2(~). For 
T ~ ~ , ,  co~(ZT) ~co(ZT) = 1 and there is a flo satisfying T s ff, oa for fl > rio. So co is the 
g--limit of co~. 

Lemma9.  The map p=pr~ o S is a continuous surjection from f2(~) onto T 
satisfying 

p o ~ = p .  

Proof. p is a well defined and surjective map by Lemma 7. 
It is sufficient to prove that p(co,) converges to p(co) for any sequence {co,}, in 

O(~) ~--converging to co. If Te~-o, and co.(ZT)+co(ZT)= 1, then CO,(ZT)= 1 and 
S(co,) is contained in T for n large enough. By Lemma 5, for any e there exists an 
e-band T~ in ~-~,. Since S(co) and S(co.) are in ~ ,  Ip(co.)-p(co)l <e. 

Since S o 4~ = S is the identity on A, we get p o ~ = p by continuity ofp and density 
of A. 

Lemma 10. Let ~ r ~ .  
(i) I f  co ~ p -  ~(a), then S(co) = (a, x) for some x ~ [0, 1 [. 

(ii) A~ = p -  t(a)mA is dense in p -  ~(a). 
(iii) p-~(a) has no p-isolated points. 
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Proof (i) Let ~o e,p-l(a) and suppose that (fl, x ) �9  S(o)). Let T~ be an e-band in ~,o 
(Lemma 5) and (a,,x,) be a sequence in A which Y-converges to o9. Then 
(fl, x) �9  ~ and Ifl-a,I <~. The continuity of,p gives a,=p(a,,x,)--*_p(o~)=~, e being 
arbitrary, fl = e. Lemma 7 shows that S(o)) is reduced to a point. 
(ii) It is sufficient to prove that given o)�9 and T�9 there exists 

co' �9 A,c~ Vr (Lemma 8). By (i), S(co) = (~, x) for x in [0, 1 [. Since (e, x) is in Tbut  is not 
a vertex of T and since T has a non-empty interior, {(a, y) [ y r Za} c~ T # ~ .  If we 
choose (a, y) in this intersection, then (~, y ) �9  A,c~ Vr. 
(iii) We need only to show that A, has no ,p-isolated point. Let (~, x)e  A, be a 
,p-isolated point. There exist T in ~'o,, a sequence ~. in I? which converges to ~ in the 
ordinary topology of I" such that ,p-~(a.)c~ VT = ~ for each n. Since (a, x) is not a 
vertex of T, a is in the interior of p(T) and so are ~, for large n. 

Case a, r ll~: Clearly {(a., x) I x r Za,} c~ T~e ~ .  Choosing o9. in this intersection, 
we get o9, �9 and o9, �9 VT, in contradiction with the hypothesis. 

Case ~ ,= P": Since a . ~ a ,  we may suppose that 1 is arbitrarily small. In 
q. q, 

particular, there exists r . � 9  {0 .. . .  , q , - 1 }  such that I~./~ .... is in the interior of T. 
Choose o9. in f2(~) such that S(m.)=I~./~ .... (Lemma 5) and again we obtain the 
contradiction e). e,p-~(a,) hence ~o. e VT. 

Proof of Proposition 3. It is immediate to verify that 

Moreover, when a r Q, 

/ H~,~)(h) = H(e, x), x r Za  
(7) 

a(th(h))= U a(rt~,,Ah)). (8) 
xCZa 

Actually, if E is in a(tl,(h)), E � 9  U a(IIo,(h)) by (6). Hence E is in 
coee-  ~(a) 

U a(17~,,,o(h)) by density of A, in ,p-l(a) [R.S., p. 290]. Using Proposition l, (7) 
xCZa 
and (8) we get a,  = a(q,(h)). 

Now Theorem 1 is a consequence of Theorem 3, Proposition 3, and Lemma 10. 

5. The Spectrum of the C*-Algebra Associated to the Hamiitonian 

In this section we describe completely the spectrum of the C*-algebra generated by 
the translates of/-/(~, x) of type (4), using the geometrical partition of T 2. 

We now write the different parts of the spectrum: 

A = {(a, x) �9 1" 21 ~ r ~ and x r 7/a}, 

Oa= U {(~,ka, s ) : f � 9  lim f(a,k~+se)}, 
a r  -}  0 < e--*0 

f2p/q,s = U , j, S 
j eZ ,  r e {0 ..... q -  1} 
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w h e r e s e { + , - } a n d ( P , q , j , s )  isthecharacter 

feN--*  lim f(P-+se, r-+(rq'+jq+6)se), V6e[0,q[ ,  
o<,~-+o \ q  , / q  

. . . . .  . - , ,  s e N - + s . _ ,  _. , i 

 s=nbesoenfrom, g +) isno, ingel e t,a. t,e 

l imi to fpointsgoingto(P,q)  withintheedgebetweenthelinesD,q,+jqand 

D,q,+ u* ~)q respectively from the right (+)  and from the left ( - ) .  When j = oe the 
sign + or - is not determined. This justifies the introduction of the space s 

becauseforeachr, thecharacters(P,~),Je[O,l[,cannotbeseparatedbyleft  

or right limits. 
For later convenience, we introduce the notation 

where 

a~ U = ~'~plq, + , 
p, qEN* 

~'~3 U 3 ~-" ~ p / q  . 
p , q ~ N *  

Theorem 5. The spectrum f2(N) of N can be identified with 
~Q=Au~QIu~QZu~Q 3. 

Proof. O(N)3g2: Clearly the points of g2 define characters on the algebra N0 
Their (unique) extensions to the closure N are in I2(N). It is easily checked that all 
these characters in t2 are different. 

t2)  g2(N): For proving that co e g2(N) is in t2, it is sufficient to find an element co' 
of g2 which coincides with co on the projections XT, T e ~ , :  Actually, if T e ~- then 
co(Zr)e {0, 1}. Thus, if T~ ~-,~, then 

O~(ZT) = 0 = 1 - -  CO(ZTO) = 1 - -  O ; ( Z T o )  = CO'(ZT) �9 

A 3e-type argument shows that co(f)= co'(f) V f e  N. 
We exhaust all possible cases for S(co) (Lemma 7): 

(i) S(oD= {(~,x)}, ~ r  and zeZ~:  ~ e A  by Lemma 7 (ii). 
(ii) S(o))= {(c~, k~)}, c~ C Q and k eTa: We assert that co e 0 l. 

For T e oj, define 

T+ = TnA_k,O={(fl, y) e Tiy>=kfl} 
(respectively T_ = T nA _g.~ = {(fl, y) e r ly < kfl }) . 

When Te~,o,  either T+ or T_ is in ~,o. Actually we have T+wT_=T and 
T+ n T_ = ~ ,  This fixes a sign + or - because ~ = T+ n R _  e ~,o is impossible 
when R, T are in ~,o. 
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Suppose it is + and let T e  ~-.,. Thus (a, kc~) e T++ and there exists co(T) such that  
(e, k e + e )  is in the interior of T for ee]0,e0(T)[.  So, for these e, 

co(ZT) = 1 = Zr(~, kc~ + e) = (~, k~, +)  (XT). 

Similarly for the sign - .  

(iii) S(co)= , with r e  {0 . . . .  , q - l } :  We assert that in that case, coet2p/q,~. 

For j e Z, define the sectors 

Sp,,,,, j, + = (A _ ,q, _ jq, _ rp' - j,) c~ (A _,q, _ tj + a)q, - rp, - tj + 1),)c, 

Sp, ~,,, j, _ = (A _ ,q, _ tj + 1)q, - ,p' - t/+ 1)p) c~ (A _ ,q, _ jq, _ rp' - jp)*. 

Recall that pq '=  1 + p' q. 

Note that (P, q )  belongs to none of these sectors. 

There exists a unique sector Sp, q,r,j, ~ in ~ ,  where j e 7/, and s ~ { + ,  - } :  
Let Txe~,o be such that Z l r ' 3 I p / q , r = ~ .  Such a set exists, otherwise the 

inclusion S(co)Dip~q, r would contradict the hypothesis. Similarly, there is T2 e ~-o, 
satisfying T2c~Ip/q,~_l=fg. So T=TlC~T2 being in ~,o must be nonempty and 

T n l . / q , , = T n I . / q , ~ _ l = f 2 ~ . S i n c e ( P , q ) e T ,  T is included in a finite union of 

sectors, otherwise S(co) would contain other points than {(P, q)}.  These sectors 

being separated by lines in N, one of them is in the filter ~-,o. The intersection of 
two of these sectors being empty, only one, say Sp,~,,,j, +, is in ~,o. 

Define arbitrarily small (for large integers n) triangles inside the sectors 

Tp, q,r.j, + ,n = Sp, q,r,j, + ~(A.q,  x +.p)C, 

Tp,~,r,j, _ , .  = Sp, q,.,i, _ ~(A.~,np) �9 

The Tp, q,r,j,s,n'S are all in f f  and actually in o~,o: If not, the intersection of the 
complement of a triangle and its sector would be in o~,o, but this is impossible 

 oca so wou,  not in, o   osuro intor=io  

Let us now show that if T e ~-,o, then there exists n > 0  with the inclusion 
T 3  Tp, q,r,~, +,.: Tc~Tp, q,r,j,~,, is in o~,o, so is not empty and the assertion is proved 
for n large enough. 

For Te~o, ,  we get by this result 

t~ o<~--,olim Z r ( (  p +e , r -+(rp '+ jq+cS)e ) )q  V6e[0 ,q[  

and co = q, q,j, + s t2,/q, +. 

~P~ x [ _ r , r + l  1 3 (iv) S(co)= l q )  kq ~ - / :  We assert that co e Qp/q. 

Let T in o~,o: thus, 7"3S(co)3Ip/q,~. If T c ~ I p / o , , = ~ ,  then the boundary of T 
contains the vertical segment Ip/q,,, which is impossible because its boundary must 
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be in ~.  It follows that T3Iv/q, r for T~-~ ,  and if 6~[0, 1[ then 

Hence o9 = (P, q)  ~ f2~/q. 

This concludes the proof of Theorem 5. 

Remarks 1. (i) p is not open on f2: 
! 

Let o9 be in f2 and let T s ~ , .  If ir = inf(prl(T)) and s T = sup(prl(T)), then ir = ~7 
p" q 

2 and s t =  ~ by construction. There exist co' in f2~,/q, + and o9" in Op,,/r with 

Fp-' p'-'l 
T e  ~@o,,c~-o,,,. This implies _P(Vr) = kq" q"J" 

(ii) Suppose that p is a continuous open map from f2 onto F = p(f2). Then, F is a 
topological quotient of f2 for an equivalence relation the classes of which are 
saturated by p. Then no fiber p -  ~(7) has a p-isolated point in f2. 
(iii) The map ~b has been defined by extension on f2(@). Actually, one can check 
that gb : f2~f2 is explicitly defined on each component of f2 by 

r x) = (~, x -  ~), 

r k~, s) = (~, ( k -  1)~, s), 

dp , r , j , s  = ( m o d l ) , j + q ' , s  , s ~ { + , - } ,  
q 

We now introduce the space F of Sect. 2: 
Let p be the map from f2 onto the disjoint union 

r =  EO,1 EU((EO, 1EnQ) x { + ,  - }) 

defined by 
p(o9)=p(og) if co~AuOiuf23 ,  

p(o9)=(po9),s) if co~f2~, s ~ { + , - } .  

For p(og) in F, let @(p(~o)) be the set of neighborhoods Vp~o,)(8) of p(o9) given for 
5>0  by 

{P(o9')l o9' ~ O,p(og')~]p(og)-~,p(o9)+~[} if o9 ~ A u O 1 u O  3, 

{P(o9') I co' ~ f2, _p(d) ~ [p(o~), p(og) + ~[} \ {(p(o9), - )}  if o9 ~ f22+, 

{p(og') [ o9' e f2,_p(og') e ]p(og) - 5, p(og)] } \ {(p(og), +)} if o9 e f22_. 

Naturally we do not take into account (0, - )  and (1, +). 
~(p(og)) defines a fundamental basis of neighborhoods of p(og) giving a 

Hausdorff topology Wp on F. Then, p and F satisfy the hypothesis of Theorem 3: 

Lemma 11. p is a continuous open map from f2 onto F such that p o dp =p. 

Proof  p o q~ = p follows from the definitions. 
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To prove the continuity of p, it is sufficient, by the metrizability of f2, to verify 
that p(co)= lim p(co.) for any co in f2 and any sequence {co.}. ~-converging to co. 

n --.~ o(9 

Thanks to Lemma 9, p is a continuous surjection from O(~) onto T. Thus p is 
clearly continuous at each co s Aw[21 uf23. 

Suppose that co = ,q, j, + e Q2. The triangles 

rm = Sp.q,,,~, + n(A,,q, 1 + rap) ~ 

are in ~-~, for m>0 .  Thus p(co,) is in 

Pr,'Tm'= e + ] , 

for n large enough, so p is continuous on 0 2. 
Similar arguments give the continuity on t22_. 
Before proving that p is open, let us observe a useful fact: 

Let co ~ t2, T s ~-,o and let 7 ~ F be such that its spatial part y (7 = (7, s)), where 
_y e l?  and s ~ { + , -  }) is in the interval ] i t ,  s t [  with 

iT=inf(prl(7")) and sr=sup(pra(7")). 

There exists co' ~ f2 such that S(co') = (7, x) is in the interior of T (thus co' e VT) and 
p(co') = 7. 
In particular for convex polygons T in ~=o,, 

p(VT)D ]iT, ST[kJ]iT, ST[ • { + }k.)]iT, ST[ • { - - } .  

To prove that p is open, we need only show that for co e t2 and T a convex 
polygon in ~o,, p(VT) is open in F: 

Let co's Vr. We assert that there is e > 0 such that Vp(o,,)(e) is included in p(Vr). 
When p(co')~]iT, ST[, the remark gives the assertion. 
When p(co')=iT, co'Sf2 2 and iT and ST are in Q. Write iT = p- and let 

r , 0 < r < q - 1  andj~7Z, be such that co'= , , j , +  (note that T i s  not in 

~p/q,~/q,j, _) for any r and j). If e satisfies e < s t - i t ,  then p(Vr)3 Vpr 

• Proof  o f  Theorem 2. We assert that trp/q = tr(rltp/q, +_ ~(h)) for h as in Proposition 3. 
The map: 7 e F~a(q~(h)) is continuous (Lemma 11, Theorems 3 and 5). Let ~. be 

a sequence in 17 such that P- < ~, and ~, tends to P-. Since T is included in F, for each 
q q 

~,~, is in V(p/q, +)(5) when n is large enough and 

cr(q~p/q,+)(h))= lim tr(r/~,(h)). 
Otn -* p/q 

By extracting a subsequence, we may assume that the sequence {~.}n is in T \ Q  or 
i n ~ .  

In the former case, a(q~.(h))= a~. (Proposition 3) and the assertion is proved. 
Note that this argument is also valid for hamiltonians of type (4). 

In the latter case, ~. = Pn/qn and 

p -  U �9 
re{0 ..... qn- 1} 
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Again by (6), (7) and Proposition 1, we get 

a(r/~.(h))= U a n a., . 
r e { 0  . . . . .  q . -  1} 

0-ct n . 

6. The Spectrum Around a Rational Number 

In the previous sections, we showed that the limits a~/q, tr~q exist for the spectrum of 

the hamiltonian H (P, x).  Here we give more details on a general operator in the 

algebra d = C(~) x , Z  associated to a "limit" character in Q2/~, • 
The situation we want to describe now is, typically, the effect of an arbitrarily 

large impurity placed somewhere inside a periodic partition of 7Z. So we introduce 
the 

Definition 4. Let A be a bounded operator o n  12(~r). Then A is called eventually 
q-periodic if there exists an impurity domain I =  {n ~ Z l a  < n <b} with b - a = c  
modulo q, satisfying for ~p ~ 12(~Z), 

T-qAT+q~p=Alp when [b, ov[Dsupport0p), 

T+qAT-q~p=A~p when ] - o o ,  a]Dsupport0p),  

3k o > 0 such that Vk > k o, T kq +eAT-kq-clp(n)= A~p(n) when n > b. 

Note that the strong limit of TkqAT -kq when k goes to + ~ is a q-periodic 
operator, which we shall denote by Ape r. 

Similarly, a bounded function on Z is said to be eventually q-periodic if the 
multiplication by this function is eventually q-periodic o n  12(Z). 

Given (P, q),  we define two elements of f2 by 

Lemma 12. (i) Let 

Then, 
di, • (n) = II~,  �9 (;fo) (n) -- Fl(p/q,,/~)(Zo) (n). 

dj, +_(n)=2 ~ (3_(+_mq+jq+rq,)--6_t+mq+jq+rq,+~))(n). 
n l = l  

(ii) T -  uq +,p')Ho �9 (;~o) Tiq + 'p' = F/,oj, ~ (Zo). 

(iii) strong-lim H~,~. ~(Zo) = H<m,,/~)(Zo). 
j---, oo 

Proof (i) By definition, dj, • is 

lim Ztl-tp/q• n p + r +e(rq '+jq+n) -Z[l-p/q,l[ n q + . 
•  q q 

We treat only the case +.  
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D 

Let us assume first that n ~- + - ~ Z. Then n = - rq' + kq for some k e Z. Thus, 
q q 

dr,+(n)= lim Ztl-p/q-~,lt(eq(k+J)) - 0  
0 <~'-*0 

if  

if k < - j .  

I f n o w n P + q E ( Z - P ) , t h e n n = - r q ' + k q - l q  for some k ~ Z, and 

{ 0 if 
dj, +(n)= _ if k < - j .  

Finally, suppose that n P + - r  ~ Z u  ( Z -  P). 
q q k q /  

q) q q + (rood 1). Then t ~e 0 by hypothesis. Assume that t > 0 

and choose a sufficiently small e that 

t 1" 0 < ~ <  rp '+ jq+n+ 

Then, 

0 < n  -p + _r +e(rq' + jq+n)<n  iv + r +elrq, + j q + n +  l l _ e  
q q q q 

<n p- + r_ + t - e  
q q 

=1 - p  - e .  
q 

Thus dj, +(n)=0. In the same way, dj, +(n)=0 when t<0 .  
(ii) is immediate and (iii) follows from (ii). 

Remark 2. Note that the difference between H,o. ~(Xo) and Fltp/q,r/q)(Xo ) is not a 
�9 3 ,  

compact operator, so the proof of Theorem 4 is not direct. 

Let ~o(CO+) denote the algebra of bounded functions on 7Z generated by 
/L,~(Z.), n~Z.  

Lemma 13. Any f in ~o(O~+) is eventually q-periodic�9 

Proof The previous lemma shows that, whenj tends to _+ infinity, the strong limit 
of T-JFI~(;~o)T +~ coincides with some q-periodic function�9 Thus, H~,~(Xo) is 
eventually q-periodic�9 By translation, this is also true for Ho,~(Z,)=Ho-,~o~)(Z0). 
Since the eventually q-periodic functions form an algebra, the lemma is proved�9 

Definition 5. A bounded operator A on 12(2~) has a finite interaction range when 
there exists r > 0 such that (e,, Ae,,) = 0 if [n -  m[ > r, where {e,}. is the canonical 
basis of 12(Z). 

Theorem 6. Let A be a self-adjoint bounded operator on 12(Z) with a finite 
interaction range and which is eventually q-periodic. Let Ape , be its q-periodic part. 
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T h e n ,  

aoss(A ) = O'ess(aper)  and aao(A ) = O'ac(aper ) .  

Proof Let I =]a, b[ denote the impurity domain of A and P_ (respectively Po, P+) 
the projection onto 12(]- ~ ,  aD (respectively 12(]a, bD, 12([b, oo D). 

If ~ means equality modulo a finite rank operator, we have: 

P_AP+ ~ O, 

P+AP_ ~ O, 

A ,~ P+AP+ ~P_AP_ .  

Consider the partial isometry SI on 12(Z) associated to the impurity domain I: 

~lp(n+b) n>O 
SI~p(n) = O p ( n + a +  1) n < 0 .  

Then S*S~ = t ,  S~S* = ~-Po.  Clearly, the operator 

B = S,(P+ AP+ G P- AP_)S* 

consists in chopping off the impurity and gluing together the periodic parts on the 
left and on the right. B is not yet a periodic operator because the P+ and P_ parts 
are disconnected, but S*BS, ~Ap, r. The theorem is now a consequence of the 
classical Weyl and Birman-Kato-Rosenblum theorems [K.]. 

Note  that if A is an eventually periodic self-adjoint operator, the strong limit 
Ap~ r of TJAT -~ when j goes to _+ infinity exists and satisfies a(A)Da(Ap~,). 
Using this result, together with Lemmas 12 and 13, we obtain the 

Corollary 2. Let h ~ d o. Then F/o~j. ,(h)~F/(p/q,,/o(h) up to a partial isometry S~ 
associated to the impurity domain of F/oj. ~(h) and 

~oAu~,~, ~ (h)) = ~ao(no,,, ~ (h ) )=  ~( rI~/~, r/~)(h)) . 

Now Corollary I is immediate. 

Proof of Theorem 4. Let h ~ d and e > 0. There exists h~ ~ d o such that ][ h -  he ]L < e. 
So 

I IHo, j, ~ (h) -  Hr ~(h~)ll < e .  

(i) The strong limit of F/o,. ~(h~)= T~qF/(p/~ r/q o +)(h~) T-;q when j ~  + oo is equal 
to H(p/q,r/q)(h~) (see proof o~' Lemma 13). Thusl ' 

s -  lira/-/o~j, ~ (h) = F/(m, ./q)(h) 
j ~  + oo 

and 

a(F/,oj,~(h))=~(IIo~r,~(h)) for j@j'. 

Thus, a(F/,oj ~(h)) contains a(1-ltp/~,./~)(h)). 
(ii) Let G be an open gap in a(1-ltp/q,./q)(h)), d be the length of G and choose 

d 
O < e o <  ~-0. 
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By perturbation theory, tr(Htp/,~,r/q)(he) ) does not intersect G e~ for e < e  0, where 
X e = [inf(X) + e, s u p ( X ) -  el. Corollary 1 implies that 

trcss(Flo, j, ~ (he)) = aar j. ~ (he)) = a(I-ltn/q, r/q)(h~)). 

We avoid the accumulation points of o-css(H~u, ~ (he)) if we restrict to G 2e~ Now the 
number of eigenvalues (with multiplicity) of / lo,  ~(he) contained in G 4~~ is 

�9 . J~  �9 . �9 

uniformly bounded by the number of elgenvalues (with multlphclty) of Ho, j. ,(heo) 
contained in G ze~ for 

lind,j, ~(he)-/-/~,~, ~(hJII < 2eo. 

Thus, a(Fl~, (h) )nG 5~~ is a set of isolated eigenvalues with finite multiplicity�9 
Taking eo~0,  one concludes that tr(H~,~. ~(h))c~G is m trdi .... t~(//~,~, ~(h)). 

In the case of the Kohmoto  model H(~, x) of type (1), one can give a more precise 
result�9 The associated operator h in C(f2) x ~Z has the form 

h = U + U* + 2Zo. (9) 

We suppose in what follows the coupling constant 2 to be non-zero: 
-I- _ _  

tr pl q - a(tltplq ' • i(h)) 

= 

ODE q, =~ 

= a(Htp/q, o, o, • 

(proof of Theorem 2) 

[cf. (6)] 

(Lemma 12). 

The impurity domains are of different sizes for lI(p/q, o, o, +)(h) and Hu,/q ' o, o, -)(h): if 
the continued fraction expansion of p/q contains an even (respectively odd) 
number of quotients, the first (respectively second) one has size q' and the other 
q - q ' � 9  

Let us first recall notations and the transfer matrix technique (for more details, 
see [B.I.S.T.]). In order to find a generalized (not normalized a priori) eigenvector 
~v~(n e N) of the hamiltonian (1), corresponding to the eigenvalue E, it is equivalent 
to solve, up to a common scalar multiple, for (~.(n ~ N)) ~: 0 (4~. ~ C2), the following 
set of equations: 

~ n + l  = T n ( E ) ~ n ,  

where 

and 
; 

We also introduce the "resonant transfer matrices": 

Mq(E) = Tq(E) Tq_ l (E). . .  T 1 (E) To(E), 

Mq,(e)  = T~,(E)Tq,_ l (e ) . . ,  r l ( e )  To(e ) . 

Considering the case that the continued fraction expansion of p/q contains an 
even number of quotients (the other case can be treated similarly), we consider now 
the problem of finding a generalized eigenvalue for the hamiltonian lltp/q ' o, o, -)(h) 
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[respectively Iltp/q,o,o,+)(h)]. On writing ~ = ~ 0  and ~ '=~q ,  (respectively 
~'  = Ce-q'), it is immediate to verify that this problem is equivalent to solving, up to 
a common scalar multiple, the following set of equations for a non-zero ~. (~n e •2, 
h e N ) :  

~ i = r  ' 
(10) 

Me(E)r162 1 ( n > l  or n__< - 1 )  

Me,(E)~ o = r (respectively Me,(E )- ~Me(E)~ o = ~1). 

We can now state the following: 

Lemma 14, The following conditions are equivalent: 

(i) E e trdi .... ,e(Htp/e, o, o, - )(h)) u trdise,o '~(Ittp/e, o, O, +)(h)). 

(ii) The spectrum of  Me(E ) has multiplicity 1 and r and q~' are eigenvectors of Me(E ) 
with different eigenvalues. Moreover, Me,(E)~ is a multiple of  ~' or Mq,(E)r is a 
multiple of ~. 

(iii) Tr(Mq(E)) = _ ]//4 + 2 2 . 

Moreover, if E e tTdiscrete(l-l(p/e ' O, O, - )(h)), then the operator (H(p/e ' o, o, + )(h)) admits 
a generalized eigenvector with eigenvalue E which increases at both n ~  + oo. The 
same statement holds on replacing + by - .  

Before going to the proof of this lemma, let us show that it implies Theorem 7: 
First, we remark that any (possibly complex) solution E of the equations (iii) 

appears as an element of the spectrum ofa  selfadjoint operator and consequently is 
real. So, the equations (iii) have 2q real solutions. By the remark at the end of 
Lemma 14, the discrete spectra of the operators//~p/e,o,o, _)(h) and//~p/e,o,o, +)(h) 
are disjoint and the result follows. 

Proof of Lemma 14. A general solution of Eqs. (10) is a superposition of solutions 
for which ~ and ~'  are eigenvectors of Me(E ). Assume (i) and suppose that Me(E ) 
has its spectrum contained in the unit complex circle. Then ~n cannot tend to 0 at 

1 

the same reason, �9 (respectively ~') must be an eigenvector of Me(E ) correspond- 
1 

ing to the eigenvalue ~ (respectively fl) and (ii) follows. The converse is trivial. The 

remark at the end of the statement follows easily from the same argument: an 
exchange of �9 and ~'  allows to transform the set of equations for the operator 
I t (p/e ,  o, o, +)(h) into those for Ittp/e, o, o, -)(h). 

Using Lagrange polynomials in order to express the eigenprojections of Me(E), 
we get that (ii) is equivalent to 

(Me(E)-  fl)Me,(E ) (Me(E) - fl) = 0 

or  
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Since both operators on the left-hand side have one dimensional kernel and range, 
one has equivalently: 

or 

Tr (Mq(E)Mq,(E)) = fl Tr (Me(E)) 

1 
Tr(M~(E)Mq,(E)) = ~ Tr(M~,(E)). 

Using the fundamental invariant (see [B.I.S.T.]) 

(Tr(Mq(E))) 2 + (Tr(M~,(E))) z + (Tr(Mq(E)M~,(E))) z 

- Wr (Mq(E)) Tr (Mq,(E)) Tr(M~(E)Mq,(E)) = 4 + 2 2 , 

one gets the equivalence of (ii) and (iii) easily and this ends the proof. 

Remark 3. The method of proof does not allow to decide simply, amongst the 
whole set of solutions of Lemma 14 (iii), what are the eigenvalues of the operators 
II~p/q, o, o, _)(h) or H~p/q, o, o, +)(h). Numerically, it seems that all but one of the 
eigenvalues appear in one gap of their common periodic part, and each gap of each 
operator contains one eigenvalue, the last eigenvalue can appear as either the least 
upper bound or the greatest lower bound of the spectrum, these two situations 
being mutually exclusive with respect to the exchange of + and - .  
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