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Abstract. An ultrametric Cantor set can be seen as the boundary of a rooted weighted tree
called the Michon tree. The notion of Assouad dimension is re-interpreted as seen on the Michon
tree. The Assouad dimension of an ultrametric Cantor set is finite if and only if the space is
bi-Lipschitz embeddable in a finite dimensional Euclidean space. This result, due to Assouad
and refined by Luukkainen–Movahedi-Lankarani is re-proved in the Michon tree formalism. It
is applied to answer the embedding question for some spaces which can be seen naturally as
boundary of trees: linearly repetitive subshifts, Sturmian subshifts, and the boundary of Galton–
Watson trees with random weights. Some of these give examples of nonembeddable spaces with
finite Hausdorff dimension.

1. Introduction

This article is dedicated to giving a concrete description of the bi-Lipshitz embedding theorems
for ultrametric Cantor sets in view of their applications to various situations like the case of tiling
spaces or to the boundary of rooted weighted trees. In particular several important examples
will be given of ultrametric Cantor sets with finite Hausdorff dimension that are not bi-Lipshitz
embeddable in a finite dimensional Euclidean space.

The problem of embedding metric spaces spaces in the standard Euclidean space Rn is fairly
old, and has many faces. Hence Fréchet’s Theorem [15] shows that any finite metric space
with n + 1 elements can be embedded isometrically in Rn when equipped with the `∞-norm.
Schoenberg [31, 32] gave a necessary and sufficient condition for a finite metric space to be
embeddable isometrically in the Euclidean space Rn. These works are commonly used in data
analysis today. Beyond finite metric space, the case of compact ultrametric spaces is probably
the simplest to consider next. An ultrametric space is a metric space where the distance satisfies
the strengthened triangle inequality: d(x, z) ≤ max{d(x, y), d(y, z)} for any three points x, y, z
in the space. It is known [29] that any such space is isometrically embeddable in a (real) Hilbert
space.

However the requirement that the embedding is isometric is too strong in general. For instance
an ultrametric space is unlikely to be isometrically identified with a subset of a finite dimensional
Euclidean space. The condition that the embedding should be isometric has to be weakened. A
map f : (X, d)→ (Rn, ‖.‖) is a bi-Lipschitz embedding if it is a homeomorphism onto its image,
and furthermore
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∃c ≥ 1 , ∀x, y ∈ X ,
1

c
d(x, y) ≤ ‖f(x)− f(y)‖ ≤ c d(x, y) .

In the rest of this article, an embedding will always be assumed to be bi-Lipschitz, and a space
will be called embeddable (or f -embeddable, f standing for “finite-dimensional”) if it can be
embedded into some Rn equipped with its Euclidean metric.

The concept of Assouad dimension has been a breakthrough in the problem of embeddability
[3, 4, 5] (see also Semmes [33]). A space has finite Assouad dimension if and only if it is doubling,
that is, for some M ∈ N, any ball can be covered by at most M balls of half radius. Moreover a
separable metric space is f -embeddable only if its Assouad dimension is finite. If, in addition, the
space is ultrametric, then its f -embeddability is equivalent to having finite Assouad dimension.
This result, obtained by Assouad, was strengthened by Luukkainen and Movahedi-Lankarani [25]
and then Luosto [24]: an ultrametric space is bi-Lipschitz embeddable in Rn if and only if its
Assouad dimension is strictly less than n. The Assouad dimension seems therefore perfectly
fitted to answer the embedding question for ultrametric spaces.

In this paper, the focus is on ultrametric Cantor sets. Cantor sets are totally disconnected
metrizable compact spaces, without isolated points. A theorem of Brouwer [8] states that any two
such sets are homeomorphic (hence any of these sets can be called “the Cantor set”). However,
the Cantor set can carry a lot of different ultrametrics. A classification of all ultrametric on a
Cantor set was given by Michon [27]: an ultrametric Cantor set can be represented by a rooted
infinite tree, and the ultrametric is described by weights on the vertices (which correspond to
the diameters of a basis of neighborhoods).

This paper is structured as follows: Section 2 gives the basic notations and terminology. In par-
ticular the definition of Assouad dimension of a metric space and the description of ultrametric
Cantor sets arising as boundaries of weighted rooted trees are described (which by Michon’s
Theorem, are all ultrametric Cantor sets in existence).

Section 3 is dedicated to existing results about bi-Lipschitz embeddings. The interpretation
of the Assouad dimension in terms of the Michon tree is discussed. Luukkainen–Movahedi-
Lankarni’s result is re-proved in this formalism and takes a very concrete form. The proof is
relatively short, and self-sustained. It also has the advantage that the embedding seems slightly
more explicit than in the original proof.

As a corollary (see [19]), this result shows that the classical quasicrystalline tilings, like the
Penrose tiling, the octagonal tiling and the three classes of icosahedral tilings used to model
quasicrystalline metallic alloys [18] are embeddable when equipped with the combinatorial met-
ric. Actually if d is the dimension of such a tiling, the Hausdorff dimension of its tiling space
is equal to d and is embeddable in Rd+1, showing that the Assouad dimension is larger than
or equal to d and smaller than d + 1. It is likely that, in such cases, the Assouad dimension is
actually equal to d.

Section 4 gives a class of examples defined through a special type of subshift. An ultrametric
Cantor set appears as the transversal of quasiperiodic tilings (or in one dimension, as subshifts
of {0, 1}Z). The following two theorems are proved.

Theorem 1. The tiling space of a (bi-infinite, one-dimensional) linearly repetitive sequence is
f -embeddable.

Section 5 investigates the case of Sturmian sequences leading to
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Theorem 2. The tiling space of a Sturmian sequence x associated with the irrational number
α ∈ (0, 1) is f -embeddable if and only if α has bounded type, that is if and only if its continued
fraction expansion has bounded partial quotients. In particular for Lebesgue-almost every α this
tiling space is not f -embeddable.

Interestingly enough the Minkowski (or box-counting) dimension of a subshift is related with
its complexity (see [19, Corollary 3.15]). However, its f -embeddability (and hence its Assouad
dimension) has more to do with the recurrence properties of the orbits, and therefore reflects
some of the dynamical properties of the subshift. Both combinatorial and dynamical properties
of the subshift seem to be captured by the metric. This remark is one of the motivations
for studying the metric properties of ultrametric Cantor sets arising from tilings: the distance
provides an additional structure which reflects dynamical or combinatorial properties of the
tiling. A notion of spectral dimension associated with a family of spectral triples defined on this
space had been investigated by Pearson and the first author [30]. It can be seen here that each
different concepts of dimension give a specific perspective on these spaces.

In Section 6, the Hausdorff dimension is discussed in terms of the Michon tree representation.
In a previous paper, Savinien and the second author [19] showed that a self-similar ultrametric
Cantor set is embeddable in Rn as soon as n is strictly more than the Hausdorff dimension of
the space. However, in general, the Hausdorff dimension has no reason to be a good predictor
of the embeddability of a space. The Hausdorff dimension is also discussed to prepare the last
example discussed in this paper.

Section 7 concerns random trees obtained from a Galton–Watson branching process [16, 6].
Let p be a probability defined on the set N = {0, 1, 2, · · · } of natural integers. A GW -tree is
defined as a rooted tree in which each vertex v has Mv children, where the Mv are independent,
identically distributed random variables with probability distribution p (p is a distribution on the
natural integers). It is a classical result in probability, partly proved initially by the Reverend
Watson [34], called the Galton–Watson–Haldane–Steffensen critical Theorem [21], that if the
average number of children 〈Mv〉 is less than or equal to one, the tree obtained in this way is
almost surely finite (extinction). In particular its reduced tree is empty. On the other hand, as
was eventually proved by Steffensen in 1930, if 〈Mv〉 > 1, the probability of extinction is less
than one. However, the random tree produced in this way is likely to have dandling vertices.
One way to avoid such a property is to force every vertex to have at least two children. This can
be done by demanding that p0 = p1 = 0, namely that p be supported by [2,∞) ⊂ N: then the
Galton–Watson tree is automatically reduced and this model can be called a reduced Random
tree. A first result is the following:

Proposition 1. Let p be a probability on the set [2,∞) ⊂ N. If it has an infinite support, the
boundary of the reduced Galton–Watson tree associated with this probability is almost surely not
f -embeddable.

In such a case a random weight can be added in the following way: a family (λv)v∈V of i.i.d.
random variables supported in [0, 1], with common distribution ρ is defined. A weight is defined
inductively by setting that the weight of the root is equal to 1, and κ(v) = λvκ(u) is v is a child
of u. In order that this defines a weight, it is required that ρ{0} = 0 and ρ{1} < 1. Then

Theorem 3. Let p be a probability on the set [2,∞) ⊂ N and let ρ be a probability on [0, 1]
such that ρ{0} = 0 and ρ{1} < 1. If m = 〈Mv〉 < ρ{1}−1, let s = sm be the unique solution of
〈λs〉m = 1. Then the reduced random tree T produced by the Galton–Watson process associated
with p and endowed with the random weight associated with ρ gives rise to an ultrametric Cantor
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set ∂T with Hausdorff dimension sm almost surely. In addition, its Hausdorff measure exists
almost surely and is a random probability measure.

Note that the Hausdorff dimension had been computed previously when the random variables
λv are deterministic (for example equal to e−1 or 1/2), see Hawkes [17].

Several observations can be made as a result of the analysis carried out in this paper. First, the
Sturmian and Galton–Watson trees provide very natural examples of spaces which have finite
Hausdorff dimension, but infinite Assouad dimension. More specifically, given a weighted tree
in which the weights decrease exponentially along the branches, the Hausdorff dimension of its
boundary is related to its average number of children per vertex, while its Assouad dimension
is related to the maximum number of children per vertex.

As a final anecdote, real trees growing in nature satisfy the requirement that the length of the
branches decreases exponential fast with the generation rank. Hence they behave like embed-
dable trees (in this case they are embedded in R3) if the weight is a measure of the length of
their branches. The previous results give strong constraints about the growth of real trees since
the Assouad dimension is at most 3.

Acknowledgements: J. B. thanks A. Grigor’yan and his group at the CRC701, University of
Bielefeld for giving him the opportunity to present this result prior to publication. A. J. thanks
J. Savinien for discussions on this embedding problem.

2. Definitions and notations

2.1. Trees and ultrametric Cantor sets. In this paper, a rooted tree T is described by a set
of vertices V, which is countable and satisfies the following properties:

(i) V is partitioned into V =
⊔
n≥0 Vn, and a predecessor (or “parent”) map is defined Vn+1 →

Vn for all n ≥ 1,
(ii) V0 consists of a unique element, called the root and noted •.

Given a vertex v, any vertex which admits v as a parent is called a child of v. If v ∈ Vn, the
integer n is noted |v| and called the depth or the generation of v. There is a relation between
vertices: v � w if there is a sequence of vertices γ = (v0, v1, . . . , vn), with v = v0 and w = vn,
such that each vk is the parent of vk+1. This binary relation reads: “v is an ancestor of w”
or “w is a descendant of v”. It is an order relation with the root as maximal element. In this
case, γ is called a path from v to w, which goes through vertices v0, v1, . . . , vn. A vertex is called
dangling whenever it has no children, and branching if it has at least two children.

It is sometimes convenient to encode the “parent–child” relation by means of edges (this is how
trees are defined in graph theory): a tree can be given as a set of vertex and a set of edges E,
which are both partitioned as above, with two maps r : En → Vn+1 and s : En → Vn (range
and source respectively), such that r is bijective. Then the parent map is simply s ◦ r−1. These
definitions are equivalent (note in particular that a path can be defined by a sequence of edges
or a sequence of vertices).

The trees considered here are furthermore supposed to be locally finite (every vertex has finitely
many children), and without dangling vertices. Under these assumptions, there is a well-behaved
topological space, called the boundary of the tree, and defined as

∂T =
{

(v0, v1, . . .) ∈
∏
n∈N

Vn ; v0 = • ; vk is the parent of vk+1

}
def
= lim

←
(Vn,→) ,



BI-LIPSHITZ EMBEDDING OF ULTRAMETRIC CANTOR SETS INTO EUCLIDEAN SPACES 5

which is nothing but the definition of the inverse limit of the sets Vn under the parent map
Vk+1 → Vk. Under the local finiteness condition, all Vn are finite. Therefore, equipped with
the product topology, ∂T is a totally disconnected compact set, as an inverse limit of finite
sets. Given a vertex v, let [v] be the set of all element (vn)n∈N which pass through v. Then
{[v] ; v ∈ V} is a basis for the topology. A rooted tree is called Cantorian whenever, in addition,
each vertex admits a branching descendant. The boundary of a Cantorian tree has no isolated
points, and is therefore a Cantor set.

A weight on the rooted tree T is a map κ : V→ (0,∞) such that
(i) if w � v then κ(w) ≤ κ(v),
(ii) lim|v|→∞ κ(v) = 0.

A weight κ induces an ultrametric dκ on ∂T by

dκ(x, y) = κ(x ∧ y) , x, y ∈ ∂T ,
where x ∧ y will denotes the deepest vertex through which x and y pass.

Conversely the Michon Theorem [27] establishes that any ultrametric Cantor set is isometric to
the boundary of a rooted Cantorian tree endowed with a weight. Such a tree is unique if it is
additionally required to be reduced, that is all of its vertices are branching. This tree is then
called the Michon tree of the ultrametric Cantor set.

Any given tree can be reduced as follows without changing its boundary (up to isometry). Given
T, let V′ ⊂ V be the set of branching vertices which have infinitely many branching descendants
(if T is Cantorian, V′ is the set of all branching vertices). If w ∈ V′, define its parent v in T′ to
be the closest ancestor in T which belongs to V′. The new root •′ is either • if the latter belongs
to V′ or its closest descendant belonging to V′. The vertex set V′ with the ancestor relation
inherited from T defines a tree T′, which is reduced. If the original tree comes with a weight κ,
then the restriction of κ to V′ gives a weight on the reduced tree. The two boundaries endowed
with the induced ultrametrics are then isometrically homeomorphic.

In the rest of this paper, each time an ultrametric Cantor set (X, d) is given, it is implied that
the unique Michon tree which represents it (T, κ) is given as well.

2.2. Assouad dimension. Assouad defined [3, 4] a metric dimension associated with a metric
space. When the space is ultrametric, this dimension captures particularly well the extent to
which the space can be embedded in an Euclidean space.

Definition 1. Given s > 0, a metric space (X, d) is s-subhomogeneous if there exist C > 0 such
that, for all a > 0 and all b > 0, and for all discrete subset Y ⊂ X,(

∀x 6= y ∈ Y, a ≤ d(x, y) ≤ b
)

⇒ #Y ≤ C
(
b

a

)s
.

Then, the metric dimension (or Assouad dimension) of X is defined by

dimA(X) = inf{s ∈ [0,+∞] ; X is s-subhomogeneous}

It is important to notice that the definition is uniform over the space X. Namely both constants
C and s are independent on the location of the subset Y . It becomes clear that dimA(X) is
finite if and only if (X, d) has the doubling property.

Proposition 2. The Assouad dimension is invariant under bi-Lipschitz homeomorphism.
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3. Embedding Theorems

3.1. Known Results. For ultrametric Cantor sets the following Assouad Theorem holds

Theorem 4 (Assouad [3, 4]). Let (X, d) be an ultrametric space. If dimA(X, d) < +∞, then
(X, d), is bi-Lipschitz embeddable in an Euclidean space.

This result was later refined by Luukkainen and Movahedi-Lankarani [25]

Theorem 5. Let (X, d) be an ultrametric space. If dimA(X) < n ∈ N, then X can be embedded
in Rn. Conversely, if X can be embedded in Rn, then dimA(X) ≤ n.

This last theorem provides an optimal dimension for embedding when the Assouad dimension
of the space is not an integer. However, if dimA(X) is an integer, the theorem does not answer
the question whether or not X is embeddable in Rn. This is addressed by Luosto [24], and the
answer is negative

Theorem 6 (Corollary 4.6 in [24]). An ultrametric space (X, d) can be bi-Lipschitz embedded
in Rn if and only if dimA(X) < n.

3.2. Assouad Dimension and Michon Trees. The purpose of this Section is to give a de-
scription of the Assouad dimension for ultrametric Cantor sets in terms of its Michon tree
representation.

Given a weighted Cantorian tree (T, κ), a vertex v of the tree and a number 0 < δ < 1, the
sub-tree of T under v at resolution δ (noted T(v, δ)) is defined as follows.

• Its vertices consist of all w ∈ V such that w � v and κ(w) ≥ δκ(v), as well as their
children;
• The root is v;
• Its edges are all edges of T between vertices of the sub-tree.

Since T is locally finite and the weight tends to 0 at infinity, this sub-tree is finite. By definition,
a leaf (or minimal vertices for �) of this finite tree is a vertex w in the subtree satisfying
κ(w) < δκ(v). Hence leaves are the closest descendants of v satisfying this relation. Let L(T, v, δ)
denote the set of all such leaves.

Proposition 3. Let (X, d) be an ultrametric Cantor set with Michon tree (T, κ). Then X is
s-subhomogeneous if and only if there exists a constant C > 0 such that for all vertex v in T

and all 0 < δ < 1,

(1) #L(T, v, δ) ≤ C δ−s .

Remark 1. Since the number of leaves in T(v, δ) is bounded from below by the number of
children of v, it follows immediately that the Assouad dimension is infinite whenever the number
of children per vertex is not uniformly bounded. 2

Proof. (i) Let (X, d) be s-subhomogeneous. For any vertex v and any 0 < δ < 1, let Y be the
set made of exactly one point in each [w] when w runs through the set of leaves of T(v, δ). Since
Y ⊂ [v] it follows that d(x, y) ≤ κ(v) for x, y ∈ Y . Moreover, if x 6= y, then d(x, y) = κ(u) for
some vertex u ∈ T(v, δ) which is an ancestor of the leaves in which x and y are chosen. Hence
d(x, y) ≥ δκ(v). The s-homogeneity of (X, d) then gives the inequality (1).

(ii) Conversely, let (X, d) satisfies (1). Let 0 < a < b, and let Y be a subset of X such that
a ≤ d(x, y) ≤ b for all x, y ∈ Y . In particular the diameter of Y is less than or equal to b. Hence
there is a vertex v such that Y ⊂ [v] with κ(v) ≤ b. With each x ∈ Y is associated the leaf wx
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of T(v, a/b) through which the path representing x is going. If y 6= x is another point of Y , it
follows that wy 6= wy. For otherwise d(x, y) ≤ κ(wx) < κ(v) a/b ≤ a. Hence the cardinality of
Y cannot be larger than the cardinality of L(T, v, a/b). Thanks to eq. (1), it follows that (X, d)
is s-homogeneous. �

A criterion for checking finiteness of the Assouad dimension is given now. Remark that in
conjunction with Theorem 4, this gives a criterion for embeddability into some Rn.

Proposition 4. Let (X, d) be an ultrametric Cantor set with Michon tree (T, κ). Then the
Assouad dimension of X is finite if and only if the number of children per vertex is bounded
(uniformly) and there are two constants c ≥ 1 and 0 < α < 1 such that for all vertices v � w,

(2)
κ(w)

κ(v)
≤ c α|w|−|v| ,

where |v| (resp. |w|) is the depth of v (resp. w) in the tree.

Remark 2. This characterization in terms of the Michon tree can be compared with the doubling
property for a metric space. In the present case, it corresponds to the condition that the
cardinality of the sets L(T, v, 1/2) is uniformly bounded. Assouad proved that the doubling
property is equivalent to finite metric dimension. 2

Proof. (i) Let (2) hold. Then let M be the maximal number of children per vertex. For any
δ > 0, let k − 1 be the integer part of ln(δ)/ ln(α). If w is a descendant of v of depth |v| + k,
then

κ(w) ≤ c κ(v)αk ≤ κ(v) exp
(

ln(α)
ln(δ)

ln(α)

)
= κ(v) δ.

Therefore, elements in L(T, v, δ) are at depth at most |v|+ k and its cardinality is at most Mk.
Consequently,

Mk ≤M ·M ln(δ)/ ln(α) = M exp
(

ln(δ)
ln(M)

ln(α)

)
= Mδs,

with s = ln(M)/ ln(α). Therefore, X is s-subhomogeneous, and the Assouad dimension is finite.

(ii) If the assumption represented by eq. (2) does not hold then ∀C ≥ 1, ∀0 < α < 1, ∃w � v
vertices in T, such that

κ(w)

κ(v)
> Cα|w|−|v|.

In particular it implies that

(3) ∀n ∈ N, ∃vn � wn such that |wn| − |vn| = n and
κ(wn)

κ(v)
>

1

2
.

For indeed, if not, let n be chosen such that for any vertex v and any descendant w of v which is
n levels deeper, κ(w)/κ(v) ≤ 1/2. Let now v and w be two arbitrary vertices such that w ≺ v.
By Euclidean division, |w| − |v| = kn + r with 0 ≤ r < n. Then, let v = w0, w1, . . . , wk be
vertices between v and w such that |wi| − |v| = in. By assumption,
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κ(w)

κ(v)
≤ κ(wk)

κ(v)
≤

k∏
i=1

κ(wi)

κ(wi−1)
≤ 1

2k
≤ 2

(
1

21/n

)kn+r

=

(
1

21/n

)|w|−|v|
.

So using the negation of equation (3), it was possible to establish a geometric rate of decay of
the weights, which was assumed not to hold in the first place. Therefore, equation (3) holds.

(iii) If the assumption represented by eq. (2) does not hold then, using equation (3), there exists
a sequence of vertices vn such that L(T, vn, 1/2) contains wn, which is n levels deeper than vn.
So, the subtree T(vn, 1/2) contains all vertices between vn and wn, as well as all their children.
Since each vertex is branching, it has at least two children. Therefore, L(T, vn, 1/2) contains at
least n elements. This quantity tends to infinity as n does. Hence, using the characterization of
s-subhomogeneity of Proposition 3, X cannot be s-subhomogeneous for any s, and its Assouad
dimension is infinite. �

3.3. Embedding Theorems and Michon trees. This section provides a proof of Theorem 5
for Cantor sets, using the Michon tree formalism.

Proposition 5. Let (X, d) be an ultrametric Cantor set with Michon tree (T, κ). If (X, d) is
bi-Lipschitz embeddable in Rn, then the Assouad dimension of (X, d) is at most n.

Proof. Suppose h is a bi-Lipschitz map (X, d) −→ Rn. Then, there are two constants 0 < m < M
such that for any vertex v of T,

mκ(v) ≤ diam(h([v]) ≤Mκ(v).

The goal is to show that (X, d) is n-subhomogeneous, so that the Assouad dimension of (X, d)
is at most equal to n. Let 0 < δ < 1, and let v be a vertex of T. By definition of L(T, v, δ), given
any distinct w,w′ ∈ L(T, v, δ) and any x ∈ w and x′ ∈ w′, one has d(x, x′) = κ(w ∧w′) ≥ δκ(v).
Therefore,

d(h(x), h(x′)) ≥ md(x, x′) ≥ mδκ(v).

Therefore, the Euclidean balls of center h(x) and h(x′) and diameter mδκ(v) are disjoint. It
holds for any pair w 6= w′ of elements in L(T, v, δ). It means that h([v]), which is included in a
ball of diameter Mκ(v) contains #L(T, v, δ) disjoint balls of diameter mδκ(v). By a comparing
the volumes, one gets:

#L(T, v, δ)
(
mδκ(v)

)n ≤ (Mκ(v)
)n
.

Rearranging the terms, it gives n-subhomogeneity with constant C = (M/n)n. �

Proposition 6. Let (X, d) be a s-subhomogeneous space, with s < n. Then (X, d) is bi-Lipschitz
embeddable in Rn.

The proof is adapted from the one in [19]. It relies on the construction of the δ-compressed tree
(0 < δ < 1) in an way analogous to the construction of telescoped diagrams in the self-similar
case. The construction is given by the following lemma.

Lemma 1. Let (T, κ) be a weighted Cantorian reduced tree, which is s-subhomogeneous. Then,
for all 0 < δ < 1, there exists (Tδ, κδ) a weighted Cantorian reduced tree called the δ-compression
of (T, κ) such that

(1) ∂T and ∂Tδ are bi-Lipschitz homeomorphic (for the distances induced by their respective
weight functions);

(2) κδ(w) < δκδ(v) for all parent–child pair (v, w) of vertices of Tδ.
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Furthermore, there exists a C (independent of δ), such that for all δ, the number of children per
vertex in Tδ is bounded uniformly by Cδ−s.

Proof. (i) The δ-compression of T is built inductively as follows: let δ be chosen in (0, 1).

(i) The root of Tδ is •, so that (Vδ)0 = V0.
(ii) (Vδ)n+1 =

⋃
{L(T, v, δ) ; v ∈ (Vδ)n}.

(iii) w in(Vδ)n+1 is a child of v ∈ (Vδ)n in Tδ in Tδ if and only if w is a descendant of v in T.
(iv) The weight κ′ on V′ is the restriction of κ.

The new tree Tδ is always reduced if T is, because a vertex v has more children in Tδ than it has
in T, and therefore all vertices of Tδ are branching. Also, by definition of L(T, v, δ), the weight
satisfy condition (2) of the lemma.
Thanks to the s-subhomogeneity, there is C > 0 such that the number of children of a vertex in
Tδ is bounded by the cardinality of the sets L(T, v, δ) namely by Cδ−s. It proves the last point.
Another consequence is that Tδ is locally finite, and therefore Cantorian.

(ii) The map φ : ∂T → ∂Tδ is defined as follows. Let γ ∈ ∂T be a path defined by the
sequence of vertices (v0, v1, . . .) be the sequence of vertices through which it passes. Since
limk→]infty κ(vk) = 0, there is a sequence (vk(i))i≥0 such that k(0) = 0 and k(i+ 1) = min{k >
k(i) ; κ(vk(i+1)) < δκ(vk(i))}. Hence the vk(i) are vertices of Tδ. Consequently the sequence of
vertices (vk(i))i≥0 defines a unique path in Tδ, which is set to be φ(γ) by definition. It is easy

to see that φ is bijective, and that the image by φ of an open set is open. Therefore, φ−1 is
continuous. Since Tδ is locally finite (by the s-subhomogeneity assumption), ∂Tδ is compact, so
φ is a homeomorphism.

(iii) To see that φ is bi-Lipschitz, let x, y ∈ ∂T. Let v = x ∧ y. Then d(x, y) = κ(v). Let w
be the closest ancestor of v which is also a vertex of Tδ (possibly v = w; more precisely, v is a
vertex of Tδ if and only if v = w). Then by definition of Tδ,

(4) δκ(w) ≤ κ(v) ≤ κ(w).

It is a quick check that dκδ(φ(x), φ(y)) = κδ(w). Together with equation (4), it proves that φ is
bi-Lipschitz. �

Proof of Proposition 6. Let (T, κ) be the Michon tree associated with (X, d). Let 0 < δ < 1,
and (Tδ, κδ) be the δ-compression of the tree. The value of δ will be adjusted later. The goal is
to first build a map ∂Tδ → Rn, and then show that this map is a bi-Lipschitz homeomorphism
for an appropriate value of δ. Since (X, d) is bi-Lipschitz homeomorphic to ∂Tδ, it will prove
the result.
(i) Let M(δ) be an upper bound for the number of children per vertex in Tδ (there is a C such
that for all δ, M(δ) ≤ Cδ−s, with s < n). Then, define a function g : Vδ → {1, . . . ,M(δ)} such
that its restriction to the set of children of v be one-to-one for all vertex v ∈ Vδ. Such a map
is simply a numbering of children of each vertex. Any point x ∈ ∂Tδ will be represented by the
sequence x = (vk)k≥0 of its vertices in Tδ, with vk a vertex of depth k, for all k. In particular
(by definition of Tδ), κδ(vk) < δk. Then let φ : ∂Tδ → Rn be defined by φ(x) = (φr(x))nr=1 with

φr(x) =

∞∑
j=0

g(vjn+r)κδ(vjn+r−1), 1 ≤ r ≤ n.

Since g(vk) ≤M(δ) and κδ(vk) < δk it follows that the series converges absolutely and uniformly
with respect to r and x.
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(ii) Let now x, y ∈ ∂T with x 6= y with x = (vk)k≥0 and y = (wk)k≥0. Then let j0, r0 be natural
integers such that |x∧ y| = j0n+ r0− 1 and 1 ≤ r0 ≤ n. It follows that the paths x and y share
the same vertices until the generation |x ∧ y| and they split at the next generation. Therefore
(with the notation that χ(r ≥ r0) is 1 if r ≥ r0 and 0 otherwise),

φr(x)− φr(y) =

∞∑
j=j0+1

(
g(vjn+r)κ(vjn+r−1)− g(wjn+r)κ(wjn+r−1)

)
+ χ(r ≥ r0)

(
g(vj0n+r)κ(vj0n+r−1)− g(wj0n+r)κ(wj0n+r−1)

)
It should be remarked that

−g(wjn+r)κ(wjn+r−1) ≤ g(vjn+r)κ(vjn+r−1)− g(wjn+r)κ(wjn+r−1) ≤ g(vjn+r)κ(vjn+r−1).

Furthermore, both vjn+r−1 and wjn+r−1 are descendants of x ∧ y, sitting n(j − j0) + (r − r0)
levels deeper than x ∧ y. Therefore, by construction of Tδ,

κ(vjn+r−1) < δn(j−j0)+(r−r0)κ(x ∧ y), and similarly for wjn+r−1.

It leads to the inequality

|g(vjn+r)κ(vjn+r−1)− g(wjn+r)κ(wjn+r−1)| ≤M(δ)κ(x ∧ y)δn(j−j0)+(r−r0)

Therefore

(5) |φr(x)− φr(y)| ≤ M(δ)

1− δn
κ(x ∧ y) .

Since κ(x∧ y) = dκ(x, y), this map is Lipschitz continuous. On the other hand, ‖φ(x)−φ(y)‖ ≥
|φr(x)− φr(y)| for all 1 ≤ r ≤ n. In particular, using again eq. (5) and since vj0n+r0 6= wj0n+r0 ,
it follows that

‖φ(x)− φ(y)‖ ≥ |φr0(x)− φr0(y)| ≥ κ(x ∧ y)− δnM(δ)

1− δn
κ(x ∧ y) .

Now, since M(δ) grows at most like Cδ−s, with s < n, it follows that for a small enough value
of δ, this map is actually bi-Lipschitz (in particular, it is one-to-one). �

4. S-adic Systems

4.1. Definitions. This section is devoted to the basic definitions for S-adic systems. The
presentation uses the notations of Durand [11, 12]. Let A be a finite alphabet. Note A? the set
of all finite words with letters in A. For w ∈ A?, |w| denotes its length, namely the number of
letters it contains. Consider S a finite set of morphisms

σ ∈ S : A(σ) −→ A?, with A(σ) ⊂ A.
A S-adic system is a sequence (σn : An+1 → (An)?)n∈N ∈ SN, such that the morphisms are
composable. It will be assumed that for all n, every letter in An appears in a word σn(b) for
some b ∈ An+1. For m > n the following notation will be used

σn,m = σn ◦ . . . ◦ σm−1 : Am → An.

It satisfies σn,m ◦σm,k = σn,k. A S-adic system is primitive if there exists some s0 > 0 such that
for all r ∈ N, for all a ∈ Ar+s0 and all b ∈ Ar, the letter b appears in the word σr,r+s0(a). It is
called proper if there exist two letters l and r in A such that for all σ ∈ S and all a ∈ A(σ), σ(a)
begins by the letter l and ends by r. Furthermore, it will be assumed from this point on, that
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(6) lim
n→+∞

min
c∈An

|σ1,n(c)| = +∞,

so that words of arbitrary long length are obtained from iterating the substitutions on a single
letter.
Given a proper S-adic system, there is a way to associate a subshift Ξ ⊂ AZ (it is then called a
S-adic subshift). Let T be the shift operator on AZ

T (. . . x−1 · x0x1 . . .) = . . . x−1x0 · x1 . . . .

It is straightforward to extend the morphisms of S to AZ by concatenation

σ(. . . x−1 · x0x1 . . .) = . . . σ(x−1) · σ(x0)σ(x1) . . . .

It ought to be remarked that, by properness, for all n, σ1,n(l) is a prefix of σ1,n+1(l). Similarly,
σ1,n(r) is a suffix of σ1,n+1(r). Therefore, an element of AZ can be defined by

x =

(
lim

n→+∞
σ1,n(r)

)
·
(

lim
n→+∞

σ1,n(l)

)
,

where the dot separates the xi with i ≥ 0 on the right from the ones with i < 0 on the left.
The subshift associated with the S-adic system is the closure in AZ (endowed with the product
topology) of the orbit of x under the shift. This subshift, Ξ, is endowed with the combinatorial
distance d, namely two sequences have distance (n+ 1)−1 whenever they coincide on a string of
radius n around the origin and do not coincide beyond. If the S-adic system is primitive, (Ξ, T )
is minimal (see Durand [11, Lemma 7]).

Definition 2. A word x ∈ AZ is called linearly recurrent or linearly repetitive (LR for short)
if there is a constant K such that for all n ∈ N, for all subwords w and w′ of x respectively of
length n and Kn, then w occurs in w′ as a subword.

In other terms, in a LR word, each finite subword repeats infinitely often and within a distance
which varies linearly with its size. It is easy to see that a subshift generated by an LR word is
minimal and that every elements of the subshift is LR with the same constant. In this case, the
subshift itself is called linearly recurrent. The following is due to Durand.

Theorem 7 (Durand [12], Proposition 1.1). A subshift is S-adic primitive and proper if and
only if it is linearly recurrent.

The periodic case is trivial. In the non-periodic case, Durand’s construction of the S-adic system
associated with a linearly recurrent subshift involves return words. The S-adic system he builds
in this case has the unique decomposition property (defined below). This property will be used
later on (see [12, Section 4] for the construction, and [13, Definition 9, Lemma 17] for the
properties of return words and codes).

Definition 3. Let (σn)n∈N be a S-adic system. It is said to have unique decomposition property
if, given any element x in the subshift associated with Ξ, there is a unique decomposition of x
as a concatenation

x = . . . σ1(a−1)σ1(a0)σ1(a1) . . . ,

where the index 0 of x is in the underlined word σ1(a0).
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4.2. Proof of Theorem 1. The periodic case is trivial (in this case, Ξ is finite), and so it may
be assumed that the subshift is aperiodic. Using the theorem of Durand cited above, it is enough
to prove the following

Proposition 7. Let Ξ be a a primitive proper S-adic subshift with unique decomposition property
and endowed with the combinatorial metric. Then, it is f -embeddable.

It will be convenient to describe an S-adic subshift in terms of a Bratteli diagram (see for
example [13]). A weight on the Bratteli diagram permits to define an ultrametric on the set of
its infinite paths. It will be necessary to prove that:

– the ultrametric Cantor set associated with this Bratteli diagram is bi-Lipschitz homeo-
morphic to the subshift with the combinatorial metric;

– the weight on the Bratteli diagram satisfies the decay rate of Proposition 4 so that the
Cantor set associated with the diagram is embeddable.

The following result is needed.

Lemma 2 (Durand [11], Lemma 8). If the S-adic system generated by (σn)n∈N is primitive with
constant s0, there exists a constant K such that for all integers r, s, with s− r ≥ s0 and for all
b, c in As+1

|σr,s+1(b)|
|σr,s+1(c)|

≤ K.

Let (σn : An+1 → An) be a primitive S-adic proper system with unique decomposition property
and let l and r the letters associated with the properness. The Bratteli diagram is defined as
follows

– For all n ∈ N, the set of vertices Vn is in bijection with the alphabet An: for each a ∈ An,
there is a va ∈ Vn.

– For all n ∈ N, an edge in En is a triple e = (va, k, vb) where va ∈ Vn, vb ∈ Vn+1 and k ∈ N
such that the letter a occurs in the word σn(b) in position k + 1. Hence, the number of
edges from va to vb is equal to the number of times the letter a appears in σn(b).

– If e = (va, k, vb) ∈ En its source is s(e) = va, its range is r(e) = vb and its label is `(e) = k.

Example 1. If σn(b) = labcar, then there are two edges e1, e2 from va to vb: one corresponds
to the second letter and the other to the fifth letter of the word above. Their respective labels
are 1 and 4. 2

Definition 4. A path on the Bratteli diagram is a sequence of edges (ek)i≤k<j (with 1 ≤ i <
j ≤ +∞), such that ek ∈ Ek for all k and r(ek) = s(ek+1). Let Πn denote the set of paths with
i = 1, j = n (simply called “paths of length n”). Let Π denote the union of all Πn and let Π∞
be the set of paths of infinite length (i = 1, j = +∞).

Because the σn’s are taken from a finite set of substitutions S the cardinality of the sets En and
Vn is uniformly bounded in n. Let

wn =
(

min{|σ1,n(a)| ; a ∈ An}
)−1

.

It is a decreasing sequence which tends to 0 as n → ∞. The weight of a finite path γ will be
defined by wn+1 whenever γ has length n. This leads to a metric on Π∞ defined by

dw(x, y) = wn+1, where n is the length of the longest common prefix of x, y.
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Proposition 8. The subshift (Ξ, d), endowed with the combinatorial metric, and (Π∞, dw) are
homeomorphic though a bi-Lipschitz homeomorphism.

Proof. (i) Constructing a map Ξ → Π∞. Let x = . . . x−1 · x0x1 . . . in Ξ. Let v1 ∈ V1 be the
vertex corresponding to the letter x0. By the unique decomposition property, x can be written
in a unique way as the concatenation

x = . . . σ(x′−1)σ(x′0)σ(x′1) . . . ,

with (x′i)i∈Z ∈ (A2)Z and such that the letter of x of index 0 is in the underlined word σ(x′0).
Therefore, if x′ is the word x′ = (x′i)i∈Z

(7) x = T kσ(x′),

for some 0 ≤ k < |σ(x′0)|. This label k corresponds to an occurrence of the letter x0 in the word
σ(x′0). It defines an edge e = (v1, k, v2), where v2 ∈ V2 is the vertex corresponding to x′0. Iter-

ating this process of “de-substitution” leads to construct a sequence of words x′, x′′, . . . , x(n) . . .
and a corresponding sequence of edges e1, e2, . . . , en. In particular ψ(x) = (e1, e2, . . .) defines a
map Ξ→ Π∞.

(ii) ψ is a bijection. The map ψ has an inverse φ : Π∞ → Ξ which will be built explicitly. Let
γ = (e1, e2, . . .) be a path going through the vertices v1, v2, . . .. Let ε be a symbol not in A (the
“empty” symbol). Now, given a finite word w = (w0, . . . , wl−1) ∈ A∗, Define then w̄ ∈ (A∪{ε})Z
as the sequence

w̄ = . . . ε ε ε · w ε ε ε . . . .

This is a way of seeing a word in A∗ as a (partially defined) element of AZ. For fixed n, define
the sequence

(8) φn(γ) = T l(e1) ◦ σ1 ◦ T `(e2) ◦ . . . ◦ σn−2 ◦ T `(en−1)+1
(
r σn−1(an) l

)
,

where `(e) denotes the label of the edge e. This sequence can be seen as an element of (A∪{ε})Z,
namely as:

. . . εε σ1,n−1(r) σ1,n(an) σ1,n−1(l) εε . . . ,

where the letter of index 0 occurs in the underlined word. Its exact position is determined by
the labels of the edges. This implies

(9) [φn(γ)]i 6= ε for − |σ1,n−1(r)| ≤ i ≤ |σ1,n−1(l)|.
By hypothesis, limn→+∞ |σ1,n−1(b)| = +∞ and this is true, in particular, whenever b ∈ {r, l}.
Therefore, the limit as n tends to infinity of φn(γ) is an element of AZ, which is noted φ(x).
Using the definitions of φ and ψ (see eq. (7) & (8)), it is straightforward that ψ ◦ φ = idΠ∞ .
Therefore, ψ is onto and φ is one-to-one.
Conversely, let x ∈ Ξ, and γ = ψ(x). It will be shown that φ(γ) = x. For all n, x has a unique
decomposition

x = . . . σ1,n(b−1)σ1,n(b0)σ1,n(b1) . . . ,
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with bi ∈ An. So by definition of ψ and φ,

(10) φn(γ) = . . . ε σ1,n−1(r) σ1,n(b0) σ1,n−1(l) ε . . . ,

and the two words coincide on the word σ1,n(b0) (it appears at the same position). Furthermore,
by properness of the S-adic system, σn(b−1) ends with the letter r while σn(b1) begins with the
letter l. Therefore, σ1,n(b−1) has σ1,n−1(r) as a suffix and σ1,n(b1) has σ1,n−1(l) as a prefix. So
for all i ∈ Z such that [φn(γ)]i 6= ε, one has [φn(γ)]i = xi. Taking a limit and using Equation (6),
φ(γ) and x agree everywhere. Therefore, φ and ψ are inverse bijections of each other.

(iii) φ is bi-Lipschitz. Let γ, γ′ ∈ Π∞ be such that the n first edges of γ and γ′ coincide.
Then, by definition, φn(γ) = φn(γ′). Thus φ(γ) and φ(γ′) coincide for all indices i satisfying
−|σ1,n−1(r)| ≤ i ≤ |σ1,n−1(l)|. Using Lemma 2 and the definition of wn leads to

∀b ∈ An−1 , (wn−1)−1 ≤ |σ1,n−1(b)| ≤ K(wn−1)−1.

Since S is finite, C = maxσ∈S,a∈A(σ) |σ(a)| is well defined. Then, a word of the form σ1,n(b) =
σ1,n−1 ◦ σn−1(b) is at most C times longer than the longest word of the form σ1,n−1(c). That is,
using again Lemma 2, (wn)−1 ≤ CK(wn−1)−1. If [φ(γ)]i = [φ(γ′)]i for |i| ≤ K(wn−1)−1, then in
particular this inequality holds for |i| ≤ (wn)−1/C. So

d(γ, γ′) ≤ wn ⇒ d(φ(γ), φ(γ′)) ≤ Cwn.
Conversely, let γ and γ′ coincide up to edge n, but differing on their (n + 1)-th one. Then, by
definition of φ

φ(γ) = . . . σ1,n+1(b−1)σ1,n+1(b0)σ1,n+1(b1) . . .

φ(γ′) = . . . σ1,n+1(b′−1)σ1,n+1(b′0)σ1,n+1(b′1) . . .

where b0 6= b′0 and the letter of index 0 belongs to the respective underlined words. By the
unique decomposition property, φ(γ) and φ(γ′) have to differ at at an index i satisfying

−max{|σ1,n+1(b0)|, |σ1,n+1(b′0)|} ≤ i ≤ max{|σ1,n+1(b0)|, |σ1,n+1(b′0)|},
that is for

−K(wn)−1 ≤ i ≤ K(wn)−1.

This proves that φ−1 is Lipschitz. �

Proof of Proposition 8. In order to prove that (Ξ, d) is f -embeddable, it is sufficient to
prove that (Π∞, dw) is embeddable. It suffices to remark that the corresponding Michon tree
has the finite paths in Π as vertices and the parent map is induced by deletion of the last edge.
By finiteness of S, all paths in Πn have a bounded number of extensions to paths of Πn+1 and
this bound is independent of n. Hence the Michon graph has a bounded number of children
per vertex. The only thing left to show is that the sequence of weights (wn)n∈N on the Bratteli
diagram is bounded above by a decreasing geometric sequence.

First, remark that for all n, the alphabet An has at least two elements. Indeed, if one of the
An had only one element, the subshift Ξ would be periodic (this case was ruled out). Using
primitivity, for all letter c ∈ As0+1, |σs0(c)| ≥ 2. By iteration, for all k and all c ∈ Aks0+1
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|σks0(c)| ≥ 2k .

So wks0 ≤ 2−k. Since (wn)n∈N is decreasing, wn ≤ Cλn with λ = 2−1/s0 < 1, for some constant
C. Thanks to Proposition 4 it is proved that (Ξ, d) has finite Assouad dimension, and is therefore
embeddable.

4.3. An possible analogue result for tilings. It is a natural question to ask whether linearly
repetitive tilings of Rn are f -embeddable. It seems reasonable to make the following conjecture
(see for example [1] for the definitions of the objects).

Conjecture 1. Let Ξ be the transversal of a tiling space of linearly repetitive tilings of Rd,
together with the usual tiling metric. Then Ξ is f -embeddable.

The proof for subshifts is based on the fact that linearly repetitive subshifts have a good repre-
sentation by Brattli diagrams. While they are not self-similar, there are only a finite number of
substitutions involved, which allows to generalize the methods of [19]. In a recent article, Aliste
and Coronel [1] provide a good description of linearly repetitive tiling spaces of any dimension as
the set of paths on a Bratteli diagram. Given the transversal of a linearly repetitive tiling space,
it is possible to represent it by the set of paths on a Bratteli diagram such that the number of
vertices and edges in each Vn or En is bounded uniformly in n. There are also have estimates
for the size of the patches associated with paths of size n. These estimates are analogues of
Durand’s Lemma 2 and allow to define reasonable weights on the Bratteli diagram. In the end,
the path space of this Bratteli diagram, endowed with the distance defined by the weight, is
f -embeddable. However, there is no proof yet that the homeomorphism between this paths
space and the tiling space is bi-Lipschitz.
In Proposition 8, the bi-Lipschitz character of φ is proved through using equation (10). This
requires an estimate on the length of σ1,n(b0), of σ1,n−1(r) and of σ1,n−1(l). This is a quantitative
version of a property known as “forcing the border”. It seems that Aliste–Coronel’s construction
does satisfy a similar quantitative border forcing property, but this fact was not highlighted as
such in their paper (as it seems to be a byproduct of their construction and not an essential
feature of the result they prove). Establishing it would require a thorough reworking of their
already sophisticated proof. This justifies the fact that, even though this conjecture can be
stated with some confidence, it is a conjecture and not as a result.

5. Sturmian Sequences

5.1. Definitions and notations. First, a few facts need to be introduced about Sturmian
sequences and their coding. This section follows in part the presentation in [2], and proof for
some of the results cited below can be found there.

Definition 5. Given a sequence x = (xn)n∈Z ∈ AZ on the finite alphabet A, define its language:

Ln(x) = {finite words a1 . . . an which appear in x}, and L(x) =
⋃
n∈N

Ln(x).

Definition 6. Given x ∈ AZ, its complexity function px is defined by

∀n ∈ N, px(n) = Card(Ln).

When there is no risk of ambiguity, px(n) is just noted p(n). It is known that if px(n) ≤ n for
some n, then the word x is periodic.
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Definition 7. A sequence is called Sturmian if its complexity function satisfies p(n) = n + 1
and if it is not eventually periodic, namely if it doesn’t have a one-sided periodic infinite prefix
or suffix).

From the definition, a Sturmian sequence is a sequence on two letters (since p(1) = 2). These
two letters are noted 0 and 1. Note that the “not eventually periodic” condition is here to rule
out degenerate cases like . . . 111000 . . . or . . . 0001000 . . ..

Proposition 9. The frequency of the letter 1 in a Sturmian sequence x

freqx(1) := lim
n→+∞

Card{k ∈ [−n, n] ; xk = 1}
2n+ 1

is well defined, and is an irrational number, noted α ∈ ]0, 1[.

Definition 8. The Sturmian sequence x is of type zero if freqx(1) < 1/2, and of type one if
freqx(1) > 1/2.

It is easy to see that in a Sturmian sequence of type 1, the words 10, 01 and 11 may appear, but
not the word 00. The same statement holds for sequences of type 0, just exchanging the letters
0 and 1.

Given a Sturmian sequence x, there is naturally a subshift of {0, 1}Z associated with it. It is
by definition the set of all sequences y such that L(y) = L(x). It can also be defined as the
closure of the orbit of x in AZ (for the product topology). The two definitions are equivalent. It
is of course shift-invariant (hence the name “subshift”), and it is well known that it is minimal.
If x has frequency of ones equal to α, so do all the elements of its subshift. In particular, it
makes sense to write that a Sturmian subshift is of type 0 or of type 1. Conversely, the subshift
associated with x is exactly the set of all Sturmian sequences with the same frequency as x.
Therefore, it makes sense to denote Ξ(α) the subshift associated with α ∈ (0, 1). Sturmian
sequences can be recoded using the following substitutions. Define:

σ0 :

{
0 7→ 0
1 7→ 10

and σ1 :

{
0 7→ 01
1 7→ 1.

Proposition 10. For any Sturmian sequence x of type 0, there is a Sturmian sequence x′ such
that either x = σ0(x′) or x = Tσ0(x′), where T is the shift operator.
For any Sturmian sequence x of type 1, there is a Sturmian sequence x′ such that either x =
σ1(x′) or x = Tσ1(x′).

Let Φ denote the recoding map x 7→ x′. It is worth noting that if x, y are two elements of the
same Sturmian subshift, then Φ(x) and Φ(y) belong to the same subshift. Non-periodicity of
Sturmian sequences implies that for any Sturmian sequence y of type 0 (resp. 1), there is a k
such that Φk(y) is of type 1 (resp. 0).

Definition 9. Let x be a Sturmian sequence, and (Φn(x))n∈N be the sequence of recoded Sturmian
sequences. By definition, for all n,

σb10 ◦ σ
b2
1 ◦ . . . ◦ σ

b2n+1

0 (Φ2n+1(x)) and σb10 ◦ σ
b2
1 ◦ . . . ◦ σ

b2n
1 (Φ2n(x))

are in the same orbit as x. All the bn are positive, except maybe b0 = 0. The sequence (bn)n∈N
is called the multiplicative coding of the Sturmian sequence x.

All Sturmian sequences in a same subshift have the same multiplicative coding, and an acceptable
multiplicative coding determines uniquely a Sturmian subshift.
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5.2. Partial fraction decomposition and multiplicative coding. The properties of a Stur-
mian subshift are closely related to the partial fraction decomposition of the number α (which
is the frequency of ones in the subshift).
Let α ∈ R be irrational. Then α can be written uniquely α = a0 + α0, with a0 ∈ Z and
α0 ∈ (0, 1). The Gauss map G : [0, 1] → [0, 1], applied to α0, generates the continuous fraction
expansion

G(α) =
1

α
− a(α) , a(α) =

[
1

α

]
,

where [x] denotes the integer part of x, namely the largest integer smaller than or equal to x.
Hence

α = a0 +
1

a1 + α1
, a1 = a(α) , α1 = G(α) .

Iterating this formula gives rise to the continuous fraction expansion

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·+
1

an + αn

, αn+1 = G(αn) , an = a(αn−1) n ≥ 1 .

The standard notation is

α = [a0; a1, a2, · · · , an, · · · ] ,
and the an’s are called the partial quotients of α.

Definition 10. A number α has bounded type whenever, the sequence of its partial quotients
is bounded.

Having bounded type is an exceptional property. This is a theorem of Khintchine [22]. See also
Levy [23].

Theorem 8. For almost every α ∈ [0, 1] the sequence (an)n∈N∗ of partial quotients of α is
unbounded.

One famous example of such a typical number is e = 2, 71828 · · · the continued fraction of which
was computed by Leonhard Euler in 1737 namely

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, · · · , 1, 1, 2l, · · · ] a3l−1 = 2l , a3l−2 = a3l = 1 , l ≥ 1 .

Many properties of a Sturmian subshift are determined by the arithmetic properties of the
number α associated with it. The following theorem is proved in Hedlund and Morse’s seminal
paper.

Theorem 9 (see [28]). Consider a Sturmian subshift Ξ ⊂ {0, 1}Z, of parameter α. This subshift
is linearly repetitive (see Definition 2) if and only if α has bounded type.

An immediate consequence of this theorem and of Theorem 1 is the following result.



18 JEAN V. BELLISSARD, ANTOINE JULIEN

Proposition 11. Let Ξ be a Sturmian subshift with parameter α, endowed with the combinatorial
metric. If α has bounded type, then Ξ is f -embeddable.

This result needs a converse statement: if α has not bounded type, then the associated Sturmian
subshift is not f -embeddable. This will be proved in Section 5.3.
One way to understand the deep links between the combinatoric properties of a Sturmian subshift
and the arithmetic properties of its parameter α is the following. A Sturmian sequence x can be
seen as the coding of an orbit of the rotation of angle α on the circle: there is {I0, I1} a partition
of the circle, and s a point in the circle such that xn = 0 if and only if (s+α mod 1) ∈ I0. The
rotation on the circle can be related to the continued fraction decomposition of α on the one
hand, and on the multiplicative coding of x on the other hand, to get to following result.

Theorem 10 ((see [2]). Let x be a Sturmian sequence, and α = [0; a1, a2, . . .] be the frequency of
1 in x. Then the multiplicative coding of x is given by the partial quotients of (1−α)/α = α−1−1.

It is straightforward that (1 − α)/α = [a1 − 1; a2, a3, . . .]. In particular, α has bounded type if
and only if the sequence of coefficients of the multiplicative coding is bounded.

5.3. Non embeddability of certain Sturmian subshifts. This section is devoted to the
proof of the following result.

Proposition 12. Consider a Sturmian sequence x, with associated subshift Ξ and associated
parameter α. If α has unbounded partial quotients, then Ξ (with the combinatorial metric) is
not embeddable in a finite dimensional space.

A Sturmian subshift Ξ is well described combinatorially by the (bilateral) tree of words of its
elements.

Definition 11. Given a Sturmian subshift Ξ, its un-reduced tree of words is defined as follows.

– For all n ≥ 0, define a sequence of refining partitions of Ξ by:

Pn = {[y−n . . . yn] ; y ∈ Ξ},

where [y−n . . . yn] is the cylinder set of all words in Ξ which coincide with y on indices
−n ≤ i ≤ n. By convention, P−1 := {Ξ}.

– The set of vertices of the tree is in bijection with the disjoint union of all the Pn. If
U ∈ Pn, the associated vertex is noted vU .

– The ancestor relation is induced by inclusion: vU � vV if and only iv U ⊆ V .
– The weight of the vertex vU is 1/(n+ 2) if X ∈ Pn (n ≥ −1).

The (reduced) tree of words is obtained from this tree by the reduction process defined in sec-
tion 2.1.

One remark about this tree: if X ∈ Pn, then diam(X) ≤ n−1, for the combinatorial distance,
with equality if and only if X is the non-trivial union of two distinct elements of Pn+1. Note
that the vertices vX of such clopen sets X are exactly the vertices with two children: these are
precisely the ones which are not dropped by the reduction process.
This leads to the following proposition.

Proposition 13. The boundary of the reduced tree of words associated with a Sturmian subshift
Ξ is bi-Lipschitz homeomorphic to the subshift (endowed with the combinatorial metric).
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Proof. The proof is almost tautological: given an infinite path in the tree, say γ, the sequence of
vertices (vXn)n∈N defines a decreasing sequence of compact sets Xn, the diameter of which tends
to zero. Therefore, its intersection is not empty and consists of a single element {x}. Define
φ(γ) = x.
Conversely, given x ∈ Ξ, there is a unique decreasing sequence of sets Xn ∈ Pn, such that for
all n, x ∈ Xn (explicitly: Xn = [x−n . . . xn]). Then it defines an infinite path γ ∈ ∂T. Clearly,
γ is the unique pre-image of x by φ.
The fact that φ is bi-Lipschitz (and in particular, it is a homeomorphism) results from the
remark above, on the diameters of the elements of Pn. �

Lemma 3. Let y be a Sturmian sequence, assume that y = σbn0 (z), with z a Sturmian sequence.
Then y contains the words 10bn1 and 10bn0.

Proof. If y = σbn0 (z), then y is of type 0 and z is of type 1. By iteration, it is straightforward that

σbn0 (0) = 0 and σbn0 (1) = 10bn . Since z is of type 1, it contains the words 10 and 11. Therefore,
y contains the words:

10bn10bn and 10bn0.

�

Proof of Proposition 12: Let x be a Sturmian sequence, with α the frequency of 1, and
assume that α does not have bounded type. Then its multiplicative coding (bn)n∈N is an un-
bounded sequence.
Let y = Φb0+b1+...+bn−1(x), and z = Φbn(y). Without loss of generality, we assume that z is of
type 1, so that

y = σbn0 (z).

Then, using previous lemma, y contains the words 10bn1 and 10bn0. Therefore, for all 1 ≤ k ≤
[bn]/2− 1, y contains the words 002k0 and 002k1.

Applying the substitution σ := σb10 ◦ . . . ◦ σ
bn−1

0 , the sequence x contains the words

σ(0)σ(0)2kσ(0) and σ(0)σ(0)2kσ(1).

Let a be the last letter of σ(0) and σ(1) (it is the same: 0 if b0 6= 0, 1 otherwise). Since σ(1)
starts by 1 and σ(0) starts by 0, x contains the words

(11) aσ(0)kσ(0)k0 and aσ(0)kσ(0)k1.

Then, let Xk = [aσ(0)k · σ(0)k], where the dot separates the indices i ≤ 0 and i > 0. It is an
element of Pk|σ(0)|, where |σ(0)| is the length of σ(0). Let vk be the associated vertex. Note that
vk+1 is a child of vk for all k. From Equation (11), the vertices vk have two distinct children (in
the non-reduced tree of words), therefore, they are elements of the reduced tree, and their weight
is (k|σ(0)|)−1. In particular, this construction shows that there are two vertices u, v (namely v1

and v[bn]/2−1), such that the quotient of their weights is [bn/2]−1, and their distance in the tree
is [bn/2]− 1.
This construction can be done for all n. If (bn)n∈N is unbounded, this shows that the weights
cannot satisfy the geometric decay condition of Proposition 4, and Ξ is not embeddable. 2

The results presented here (namely proposition 11 and 12) provide a proof of Theorem 2. It is
actually possible to give a more complete version of it.



20 JEAN V. BELLISSARD, ANTOINE JULIEN

Theorem 11. A Sturmian subshift Ξ(α) is f -embeddable if and only if the irrational number α
associated with it has bounded type. In particular

(i) if α is a quadratic irrational, then Ξ(α) is f -embeddable;
(ii) for almost every α ∈ (0, 1), the subshift Ξ(α) is not f -embeddable;

(iii) the boundary of Ξ(e) is not embeddable for e = 2.71828 . . ..

Proof. The first part of this result is Theorem 2 which was proved above. Point (i) is a con-
sequence of the fact that quadratic irrational have an eventually periodic (hence bounded)
continued fraction expansion. Point (ii) is a consequence of the theorem of Khintchine on con-
tinued fractions, and point (iii) is a consequence of the explicit formula for the continued fraction
decomposition of e. �

6. Hausdorff Dimension

The Assouad dimension provides a good measure of embeddability of ultrametric Cantor spaces
in Rn. In [19], it was proved that for self-similar Cantor sets, the smaller dimension of a space Rn
in which an ultrametric Cantor (C, d) set can be embedded is equal to bdimH(C, d)c+ 1, where
dimH is the Hausdorff dimension. When the space is not self-similar however, there is no reason
that the Hausdorff dimension has anything to do with the possibility to embedd the space. For
example [25] mentions an example of a countable metric space (hence of Hausdorff dimension
0) which cannot be bi-Lipschitz embedded in any finite-dimensional Euclidean space. The goal
of this section is to revisit the definition and properties of Hausdorff dimension in terms of the
Michon representation for ultrametric Cantor sets. Proposition 14 gives an adapted formula for
the computation of the Hausdorff dimension, which will be used in next section.

6.1. Hausdorff Dimension of the boundary of a tree. The definition of the Hausdorff
dimension [14] starts with the following construction: given an open cover U of C = ∂T and
given s ∈ [0,∞), let Hs(U) be defined by

(12) Hs(U) =
∑
U∈U

diam(U)s .

In addition, let diam(U) = supU∈U diam(U). Then for 0 < δ < 1 let Hsδ(C) be defined by

(13) Hsδ(C) = inf
diam(U)<δ

Hs(U)

It follows that δ′ ≤ δ ⇒ Hsδ(C) ≤ Hsδ′(C). In addition, if σ > 0 then Hs+σδ (C) ≤ δσHsδ(C) ≤
Hsδ(C). Consequently,

(i) the limit limδ→0Hsδ(C) = Hs(C) exists in [0,+∞) ∪ {+∞},
(ii) there is a unique s0 such that if s > s0 then Hs(C) = 0 whereas for s < s0, Hs(C) = +∞.

This unique value s0 is precisely the Hausdorff dimension s0 = dimH(C, d). In order to give a
more tractable formula, the following definition will be nedded

Definition 12. A finite subtree Γ of T is a tree graph Γ = (VΓ,EΓ, •) where

(i) VΓ ⊂ V is finite and contains the root •;
(ii) for every v ∈ VΓ every ancestor of v belong to VΓ;

(iii) the “parent” relation is induced by the one on T (equivalently, the edges of Γ are the
edges of T between vertices of Γ).
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LΓ will denote the set of leaves (vertices of maximal depth). The finite subtree Γ is called full
if for any vertex v ∈ Γ \ LΓ, each child of v is a vertex of Γ. It is equivalent to the statement
∂T =

⋃
v∈LΓ[v].

Figure 1. A full finite subtree and its extremal vertices

The following theorem allows for simpler computation of the Hausdorff dimension.

Proposition 14. Let T be a reduced Michon tree with weight κ. For any δ > 0 let Gδ(T) be the
set of all full finite subtrees of T such that maxv∈LΓ κ(v) < δ. Then

(14) Hsδ(∂T) = inf
Γ∈Gδ(T)

∑
v∈LΓ

κ(v)s .

The following theorem was known, even for more general metric spaces than ultrametric ones.
With our notations, the proof becomes very simple and is included.

Corollary 1 (Assouad [4], Prop. 2-(j)). Let (X, d) be an ultrametric Cantor set. Then

dimH(X, d) ≤ dimA(X, d).

Conversely, for any reduced tree T, there exists a weight which turns ∂T into an ultrametric
Cantor set of Hausdorff dimension 1. It is the Kraft weight defined inductively by κ(•) = 1 and
for all w, if one notes v the parent of w and assume that v has k children, then κ(w) = κ(v)/k.
It leads to the following corollary, the proof of which is left to the reader,

Corollary 2. Let T be a reduced Michon tree with its Kraft weight K. The Hausdorff dimension
of (∂T, dK) is exactly one. In particular (∂T, dK) is f -embeddable if and only if T has a bounded
number of children per vertex.

The proofs of the first two results will be the content of the following section.

6.2. Proof of Proposition 14. Remark that the right-hand side of formula (14) is an infimum
of the quantity

∑
u∈U diam(U)s taken over the special partitions of the form U = {[v] ; v ∈ LΓ}.

Therefore,

(15) Hsδ(∂T) ≤ inf
Γ∈Gδ(T)

∑
v∈LΓ

κ(v)s .

Conversely, let U be a cover of ∂T by open sets of diameter less than δ. By definition of the
distance on ∂T, for each U ∈ U , there is a vertex vU such that U ⊂ [vU ] and κ(vU ) = diam(U).
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The family (vU )U∈U form a covering of ∂T by clopen sets of diameter less than δ. By compactness,
there is a finite sub-cover [v1], . . . , [vm]. Then, for each pair vi 6= vj , exactly one of the following
holds: (a) vi is an ancestor of vj (in which case [vj ] ⊂ [vi]); (b) or the converse holds; (c) or
neither is an ancestor of the other (in which case [vi]∩ [vj ] = ∅). By removing all clopen sets in
this covering which are included in others, it is possible to get a finite partition by clopen sets
([v′1], . . . , [v′n]). In the process, terms have been removed. Therefore∑

U∈U
diam(U)s =

∑
U∈U

κ(vU )s ≥
n∑
i=1

κ(v′i)
s.

It is straightforward to see that the subtree consisting of vertices v′1, . . . , v
′
n and all their ancestors

is a finite full subtree of T. Therefore, for each covering of ∂T by open sets, there is a full finite
subtree Γ such that ∑

U∈U
diam(U)s ≥

∑
v∈LΓ

κ(v)s.

It proves that inequality (15) is in fact an equality, which achieves the proof.

6.3. Proof of Corollary 1. Let (X, d) be an ultrametric Cantor set represented by its reduced
Michon tree T with weight κ. Without loss of generality, the weight of the root κ(δ) can be
taken to be 1. If (X, d) is s-subhomogeneous, then, for any ε > 0, Hs+ε(X) = 0. For indeed,
using Proposition 3, there is C such that for all δ, the following holds (where • is the root of T):

#
(
L(T, •, δ)

)
≤ Cδ−s.

It ought to be remarked that L(T, •, δ) is nothing but the leaves of the full finite subtree Γ
consisting precisely of these leaves and all of their ancestors up to the root. By definition, these
leaves define clopen sets [v] of diameter less than δ. Therefore by Proposition 14,

Hs+εδ (X) ≤
∑
v∈LΓ

κ(v)s+ε.

Now, the number of terms in the sum is bounded above by Cδ−s. Therefore Hs+εδ is bounded
above by Cδε, which tends to 0 as δ tends to 0.

7. Random Trees

Random trees are an ubiquitous objects in modern mathematics. It is therefore natural to
investigate the boundary of such trees, at they are good candidates to provide examples of
Cantor sets with typical properties. Originally, Sir Francis Galton and the reverend Watson
introduced these trees to investigate the probability of disappearance of family names among
the British aristocrats in the nineteen century. Nowadays, Galton-Watson processes appear in
situations as varied as, for example, the description of the nuclear chain reactions or of electron
emission in a photomultiplier tube (see [16]).

A Galton-Watson branching process, as it is called today [16, 6] defines naturally a tree. Starting
with a root •, its number of children ξ• is a random variable with integer value and probability
distribution p. Each offspring is represented by a vertex v and each vertex has a random variable
ξv attached to it, describing the number of its children. All ξv are independent and identically
distributed, with distribution p. Going inductively in the same way, leads to a tree. It is finite
with positive probability if p0 := p({0}) > 0 and is almost surely infinite otherwise. In order
to fit in the setting of this paper, the resulting tree ought to be infinite and reduced namely
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each vertex should have at least two children. In order to ensure it, it will be assumed that
p0 = p1 = 0. The resulting branching process is called a reduced random tree.

It is worth noting that, using the deterministic weight κ(v) = 2−|v|, the dimension of the
boundary of trees obtained by a Galton-Watson process was computed by Hawkes [17] to be
given by log(m)/ log(2), where m > 1 is the average number of children per vertex. The
Hausdorff dimension associated with this metric can be used to define an “average branching
number”-even for more general trees- which turns out to be the crucial parameter when studying
the behavior of random walks on trees [26]. The approach taken in the present paper is however
different, since the trees are endowed with random weights rather than a deterministic one. To
the authors best knowledge, this approach is new.

7.1. Reduced Random Trees: a review. Let p = (pn)n≥2 be the probability supported
by [2,∞) ⊂ N describing the number of children of each vertex. Let Zn be the number of
descendant at the generation n. Following Watson’s idea, it is convenient to introduce the
generating function

Pn(x) =

∞∑
l=2

Prob{Zn = l} xl

The construction of the random tree implies the following formula, where Vn denotes the set of
vertices at generation n,

(16) Zn+1 =
∑
v∈Vn

ξv .

Consequently the conditional probabilities are given by

Prob{Zn+1 = l |Zn = k} =
∑

j1+···+jk=l

pj1 · · · pjk .

In particular, it shows that (Zn)n∈N∗ defines a Markov chain. Moreover

(17) Pn+1(x) = Pn
(
P (x)

)
, P (x) =

∞∑
n=2

pn x
n .

Since p is a probability, the series defining P converges for 0 ≤ x ≤ 1. In addition, P (1) = 1,
m = P ′(1) = E(ξ) represents the average number of offsprings, if it exists. With the present
restrictions, it follows that m ≥ 2. The function x ∈ [0, 1]→ P (x) ∈ [0, 1] is positive, increasing
and convex, more generally all its derivatives, when they exist, are positive, meaning that P is
completely monotone. From the recursion relation (17) it follows immediately that

Pn(x) = P ◦ P ◦ · · · ◦ P︸ ︷︷ ︸
n

(x)

In particular, since P (1) = 1, it follows that E(Zn) = P ′n(1) = mn for all n. Hence the number
of descendants at generation n grows exponentially fast with the generation in the average.

Let now Fn be the sigma algebra generated by the variables ξv for v vertices of the generations
k ≤ n. A classical remark made by Doob [10], is that, thanks to the equation (16) defining the
process, the family (Zn)n∈N∗ satisfies
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E (Zn+1|Fn) = mZn .

Namely Wn = Zn/m
n is a martingale. As shown earlier by Doob [9] this implies

Theorem 12 (See [16, 6]). Let p = (pn)n≥2 be the probability distribution for the number ξ
of offsprings such that the average E(ξ) = m and the variance Var(ξ) = σ2 are finite. Then
the sequence Wn = Zn/m

n of random variables is a martingale with respect to the increasing
sequence Fn of σ-algebras. In particular it converges almost surely to a random variable W such
that

E(W ) = 1 , Var(W ) =
σ2

m2 −m
.

7.2. Proof of the Proposition 1. If the probability p has an infinite support, given any
integer M ≥ 2, the probability PM that a given vertex has more than M children is non zero.
The construction of the Random Reduced Tree, can be seen by associating inductively with
any vertex of generation n a string (b1, b2, · · · , bn) of integers so that 1 ≤ bn ≤ ξb1,··· ,bn−1 . In
particular, since ξv ≥ 2 for all v’s almost surely the subset W ⊂ V made of vertices for which
all bj ’s belong to {1, 2} is non empty and gives an infinite binary subtree. Since the random
variables {ξv ; v ∈W} are i.i.d., it follows that , given M ≥ 2

Prob{ξv ≤M ; ∀v ∈ A} = (1− PM )#A .

In particular the probability that all vertices in W have ξv ≤M vanishes. 2

7.3. Random Weight. In order that the boundary of the rooted random tree T = (V,E, •)
previously built becomes an ultrametric Cantor set, it is necessary to put a weight on each
vertex. The previous construction suggests that the weight itself be random and Markovian as
well. In order to do so, the following model of random weight is proposed: let (λv)v∈V be a
family of i.i.d in [0, 1] with common distribution ρ; then the weight κ(v) will be given by

κ(v) = λv κ(u) , if u = parent of v , κ(•) = 1 .

In order that this defines a good weight, it is required that λv 6= 0 with probability one, namely
ρ{0} = 0. Moreover, in order that the weight converges to zero along any infinite paths with
probability one, it will be required that ρ{1} < 1. It will be convenient to use the following
generating function (Mellin transform)

h(s) =

∫ 1

0
λsρ(dλ) .

It is easy to see that h is decreasing, logarithmically convex, namely h(ηs1 + (1 − η)s0) ≤
h(s1)η h(s0)1−η for 0 < η < 1, and lims→∞ h(s) = ρ{1}.

7.4. Proof of Theorem 3. Thanks to Proposition 14, the Hausdorff dimension of the tree can
be computed from the following random variables

(18) Hs(Γ) =
∑
v∈LΓ

κ(v)s , Hsn =
∑
v∈Vn

κ(v)s .

where Γ is a full finite subtree of the random T. In the following G will denote the set of finite
full subtrees of T. This set is ordered by the inclusion of the vertex sets. In addition, giving
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Γ,Γ′ ∈ G, then they admit a least upper bound Γ ∨ Γ′ and a greatest lower bound Γ ∧ Γ′, as

can be checked immediately. This suggests to define a new family of σ-algebras: let F̂Γ be the
σ-algebra generated by the ξu’s and the λv’s where v ∈ VΓ and u ∈ VΓ \ LΓ. In particular, if Γ

is the full tree associated with generation n, then F̂n will denote the σ-algebra generated by the
ξu’s with u vertex of generation k ≤ n − 1 and by the λv’s with v vertex of generation k ≤ n.
With these notations, the following result holds

Proposition 15. With the assumptions made previously on the construction of the random
rooted weighted tree (T,V, •, κ) the following results hold
(i) For all s ≥ 0, the family Yn(s) = Hsn/mnh(s)n is a martingale with respect to the family(
F̂n
)
n∈N

of σ-algebras. In particular it converges almost surely to a positive random variable

Y (s) such that E(Y (s)) = 1.
(ii) There is tm > sm defined as the unique solution of h(2s) = mh(s)2, such that

(a) if s < tm then Yn(s) converges almost surely to a constant,
(b) if s = tm, then,

Var(Y (tm)) = 1− 1

m
+
σ2

m2
,

(c) if s > tm the random variable Y (s) has not a finite second moment.
(iii) If ρ{1} < m−1 and if sm is the unique solution of mh(s) = 1, then the sequence of random

variables Y (Γ) = Hsm(Γ) defines a martingale with respect to the family
(
F̂Γ

)
Γ∈G

of σ-algebras.

In particular it converges almost surely to 1.

Proof. (i) From the definition of Hsn in eq. (18), it follows that

E (Hs1) = E

 ∑
v∈Ch(•)

λs

 = h(s)E(ξ•) = mh(s) .

Moreover,

E(Hsn+1 | F̂n) = E

∑
u∈Vn

κ(u)s
∑

v∈Ch(u)

λsv

∣∣∣ F̂n


= h(s)E

∑
u∈Vn

κ(u)sξu

∣∣∣ F̂n
 = mh(s)

∑
u∈Vn

κ(u)s

= mh(s)Hsn .

This calculation shows that E(Yn+1(s) | F̂n) = Yn(s). In particular it is a martingale w.r.t. the

family F̂n of σ-algebras. Since Y1(s) = Hs/mh(s) it follows that E(Y1(s)) = 1. Therefore
E(Yn(s)) = 1 for all n’s. The convergence of this family is the main result of the martingale
theory [10].

(ii) The calculation of the variance will be done through the second moment of Hsn. By con-
struction
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E
(

(Hsn+1)2 | F̂n
)

= E

 ∑
u,u′∈Vn

κ(u)sκ(u′)s
∑

v∈Ch(u)

∑
v′∈Ch(u′)

λsvλ
s
v′

∣∣∣ F̂n
 .

Let the terms with u 6= u′ be considered first. Then, since the λv’s are independent for different
v’s, it follows that

E

κ(u)sκ(u′)s
∑

v∈Ch(u)

∑
v′∈Ch(u′)

λsvλ
s
v′

∣∣∣ F̂n
 = h(s)2E

(
κ(u)sκ(u′)sξuξu′

∣∣∣ F̂n)
= h(s)2m2κ(u)sκ(u′)s .

If now u = u′, this gives two terms: the first one are terms for which v 6= v′ and the other ones
are for v = v′. The same type of calculation leads to

E

κ(u)2s
∑

v 6=v′∈Ch(u)

λsvλ
s
v′

∣∣∣ F̂n
 = h(s)2(m2 + σ2 −m)κ(u)2s ,

E

κ(u)2s
∑

v∈Ch(u)

λ2s
v

∣∣∣ F̂n
 = h(2s)mκ(u)2s .

Grouping these results, leads to

E
(

(Hsn+1)2 | F̂n
)

= h(s)2m2 (Hsn)2 + {m
(
h(2s)− h(s)2

)
+ σ2 h(s)2}H2s

n .

Averaging on both sides gives

Var(Hsn+1) =
{
m
(
h(2s)− h(s)2

)
+ σ2 h(s)2

}
mnh(2s)n .

It is worth noticing that, thanks to the definition of h, the Cauchy-Schwarz inequality gives
h(s)2 < h(2s). This inequality is actually strict because ρ{1} 6= 1, so that λ is not almost surely
equal to one. Therefore

Var(Yn(s)) =

(
1

m

h(2s)

h(s)2

)n (
1− (1− σ2

m
)
h(s)2

h(2s)

)
.

It follows that, if s < sm, then h(s)m > 1. In addition an elementary calculation shows that
the map g(s) = h(2s)/h(s)2 is monotone increasing, that g(0) = 1 and lims→∞ g(s) = ρ{1}−1.
Therefore, there is a unique tm > 0 such that m = g(tm). Using the definition of sm, it is easy
to show that sm < tm. Hence

(a) if s < tm, limn→∞Var(Yn(s)) = 0, implying that Yn converges almost surely to a constant;
this constant can only be the common average, namely limn→∞ Yn(s) = 1,

(b) if s = tm, then the variance converges to a finite value

s = tm ⇒ lim
n→∞

Var(Yn(tm)) =

(
1 +

σ2

m2
− 1

m

)
,

(c) if s > tm, then the limiting random variable Y (s) does not have a finite second moment.
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(iii) Let now Γ′ ⊂ Γ be two full finite subtrees of T. Then there is a decreasing sequence of full
finite subtrees such that Γ′ ⊂ Γj ⊂ · · ·Γ1 ⊂ Γ0 = Γ, and such that Γi+1 is obtained from Γi by
the following procedure: each vertex v ∈ LΓi which is not in LΓ′ is removed and replaced by its
parent. It is clear that, if Γi is full, so is Γi+1. This leads to

E
(
Hs(Γ) | F̂Γ1

)
= E

 ∑
u∈LΓ1;Ch(u)∩LΓ′=∅

κ(u)s
∑

v∈Ch(u)

λsv

∣∣∣ F̂Γ1

+
∑

u∈LΓ∩LΓ′

κ(u)s

Thanks to the definition of F̂Γ1 the r.h.s. becomes

E
(
Hs(Γ) | F̂Γ1

)
= mh(s)

∑
u∈LΓ1;Ch(u)∩LΓ′=∅

κ(u)s +
∑

u∈LΓ∩LΓ′

κ(u)s .

In particular, if s = sm, namely if mh(s) = 1, this gives Y (Γ) = Hsm(Γ) so that

E
(
Y (Γ) | F̂Γ1

)
= Y (Γ1) .

Proceeding inductively along the chain of Γi’s, this gives

E
(
Y (Γ) | F̂Γ′

)
= Y (Γ′) .

Therefore the family (Y (Γ))Γ∈G is also a martingale w.r.t. the F̂Γ’s. The martingale theorem
then shows that it converges almost surely. Since the full tree with boundary Vn is a member of
this family and since it has been shown that the variance converges to zero (because sm < tm),
the family converges to a constant almost surely. �

Proposition 16. Under the hypothesis of Proposition 15, the Hausdorff dimension of (∂T, dκ)
is almost surely equal to sm.

Proof. Thanks to Proposition 15, Hsm(Γ) converges almost surely to 1. It follows that

Hsmδ = inf
Γ∈Gδ

Hsm(Γ) , ⇒ lim
δ↓0
Hsmδ = 1 .

Consequently, Hsδ →∞ for s < sm and Hsδ → 0 for s > sm. Hence dimH(∂T, dκ) = sm. �

Proposition 17. Under the hypothesis of Proposition 15, the Hausdorff measure of (∂T, dκ) at
the dimension s = sm exists almost surely and is a random probability.

Proof. In order to prove it, it is sufficient to consider the basis of clopen sets of the form [u] for
u ∈ V. It boils down to consider

Hsm(Γ;u) =
∑

v∈LΓ;v�u
κ(v)s .

a calculation similar to the one made in the proof of Proposition 15, shows that the family of
{Hsm(Γ;u) ; Γ ∈ G , u ∈ VΓ} is also a martingale satisfying

E
(
Hsm(Γ;u)

∣∣ F̂Γ0

)
= κ(u)sm ,

for all full finite subtree Γ0 with u ∈ LΓ0 and Γ ⊃ Γ0. Therefore, the Martingale Theorem
implies that µ([u]) = limΓHsm(Γ;u) exists and that it is a random variable. Since the set of
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vertices is countable, the set of probability zero on which the convergence does not hold can be
chosen independently on u ∈ V. By construction∑

u∈LΓ0

Hsm(Γ;u) = Hsm(Γ) ,

showing that, after taking the limit,
∑

u∈LΓ0
µ([u]) = 1. In addition, whenever Γ is a full finite

subtree, {[v] ; v ∈ LΓ0} forms a partition by clopen sets. Moreover, clopen sets of the form
[v] (v a vertex of the tree) generate the σ-algebra of Borel sets. Hence µ defines a probability
measure on ∂T. �
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[15] M. Fréchet, “Les dimensions d’un ensemble abstrait”, Mathematische Annalen, 68, (1910), 145-168.
[16] T. E. Harris, The theory of branching processes, Die Grundlehren der Mathematischen Wissenschaften, Bd.

119 Springer-Verlag, Berlin; Prentice-Hall, Inc., Englewood Cliffs, N.J. (1963). The theory of branching
processes (Corrected reprint of the 1963 original book), Dover Phoenix Editions, Dover Publications, Inc.,
Mineola, NY, (2002).

[17] J. Hawkes, “Trees generated by a simple branching process”, J. London Math. Soc. (2), 24 (1981), no. 2,
373-384.

[18] F. Hippert & D. Gratias Eds., Lectures on Quasicrystals, Editions de Physique, Les Ulis, (1994).
[19] A. Julien, J. Savinien, “Embeddings of self-similar ultrametric Cantor sets”, Topology and Applications,

158, (2011), 2148-2157.
[20] A. Julien, J. Savinien, “Transverse Laplacians for substitution tilings”, Comm. Math. Phys., 301, (2011),

285-318.
[21] D. G. Kendall, “Branching processes since 1873”, J. London Math. Soc., 41, (1966), 385-406.
[22] A. Khintchine, Continued Fractions, New York: Dover, (1997).
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