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J. BELLISSARD, J. GERONIMO, A. VOLBERG AND P. YUDITSKII1

1. Introduction

In 80’s the following interesting phenomena was discovered: the spectral measure
of an almost periodic Jacobi matrix can be singular continuous (supported on a
Cantor type set of the zero Lebesgue measure). The effect was studied from both
sides — from coefficient sequences to spectral data [1], [4] and from spectral data
to Jacobi matrices.

The second, usually more elegant, approach produced the following example [3],
[2]. Let T (z) = z2 − C. For C > 2 the Julia set E of T is a real Cantor type
set, |E| = 0. Denote by µ the balanced measure on E, µ(T−1(F )) = µ(F ) for all
F ⊂ E. Let

J =



q0 p1

p1 q1 p2

. . .
. . .

. . .


(1)

be the Jacobi matrix associated to the given measure. Note that to construct
J : l2(Z+) → l2(Z+) one uses the three term recurrent relation for polynomials
orthonormal in L2

dµ

λPk(λ) = pkPk−1(λ) + qkPk(λ) + pk+1Pk+1(λ),(2)

of course Pk 7→ |k〉, where {|k〉} is the standard basis in l2(Z+).
Then the given matrix satisfies the renormalization equation:

V ∗T (J)V = J,

where V |k〉 = |2k〉. In fact, this is a system of nonlinear equations for pn’s (qn = 0
in this case), due to which at least for C > 3 one gets inductively that

|p2nl+m − pm| ≤ εn, for all l,m; εn → 0 (n→∞).

That is the sequence {pn} and, by definition the matrix itself, is limit periodic. It
looks very natural to conjecture that if only T is an arbitrary expanding polynomial
in the sense of Complex Dynamics [7] then its balanced measure produces a limit
periodic Jacobi matrix. Several research groups attacked this problem (in full
generality) but failed. Even the case of the quadratic polynomial with C > 2
is still open.

Recall some properties of Jacobi matrices. Let J be a Jacobi matrix, J∗ = J ,
acting in Cd or l2(Z+). Under the assumption pk 6= 0 the vector |0〉 of the standard
basis is cyclic for J . The resolvent function is a function of the form

r(z) =
〈
0
∣∣(J − z)−1

∣∣ 0
〉
.(3)

1 This work was supported by the Austrian Founds FWF, project number: P16390–N04.
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It has positive imaginary part in the upper half plane and hence possesses the
representation

r(z) =

∫
dσ

λ− z =
〈
1
∣∣(λ− z)−1

∣∣1
〉
L2
dσ

.(4)

where λ· is the operator multiplication by the independent variable in L2
dσ and 1

is the function that equals one identically. Formulas (3) and (4) give one to one
correspondence between triples {L2

dσ, λ·,1} and {l2(Z+), J, |0〉} or {Cd, J, |0〉}, re-
spectively, in the finite dimensional case. To restore J starting from the nonnegative
measure σ one uses (2).

Our first object is the following

Conjecture 1.1. Let T (z) be an expanding polynomial of degree d with a real Julia
set E, E ⊂ [−ξ, ξ], T−1 : [−ξ, ξ]→ [−ξ, ξ]. Define J = J(x) by

〈
0
∣∣(z − J(x))−1

∣∣ 0
〉

=
T ′(z)/d
T (z)− x, x ∈ [−ξ, ξ].(5)

Respectively Jn(x) is associated with an iteration Tn = T ◦n, deg Tn = dn. Then for
every ε there exists n such that

||Jn(x)− Jn(0)|| ≤ ε.(6)

Note that eigenvalues of Jn(x) and Jn(0) are close, so non trivial part deals with
eigenvectors.

Let us explain how this conjecture is related to the general one. If µ is the
balanced measure on E, then the resolvent of J = J(µ) satisfies to the following
Renormalization Equation

V ∗(z − J)−1V = (T (z)− J)−1T ′(z)/d,(7)

where V |k〉 = |kd〉. Let us include J into a chain {Jn(t)}t∈[0,1] defined by

V ∗n (z − Jn(t))−1Vn = (Tn(z)− tJ)−1T ′n(z)/dn

(compare the last equation with (5)). Then the main goal is to show that

||Jn(1)− Jn(0)|| ≤ ε for n > n0,

since it would imply immediately that J(µ) is limit periodic. Thus to prove Con-
jecture 1.1 is a good model problem on the way to prove limit periodicity of J(µ).

The following approach looks very natural: to get (6) we have to estimate J ′(x).
Given derivative has a special representation

dJ(x)

dx
= F (J) + [G, J ](8)

with F (J) = {T ′(J)}−1. It is a certain flow on Jacobi matrices that in a sense is
dual to the well–known Toda flow. We call it FG flow [6] (see Sect. 2). The first
term in the right hand side in (8) is small due to the characteristic property of
expanding polynomials: |T ′n(x)| ≥ Acn, x ∈ E, with A > 0, c > 1. It appears that
the estimation we get for G is not enough to state that the commutator [G, J ] is
sufficiently small (Proposition 2.6). However on this way we found quite designing
formulas and connections with so many objects (the Hilbert transform, the Schwarz
derivative, the Ruelle and Laplace operators) that, we sure, they are of independent
interest.

In the framework of this approach, initiated in [9], we managed to prove the
following theorem that partially confirms the main hypothesis.
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Theorem 1.2. Let J be the Jacobi matrix associated with iterations of an expand-
ing polynomial T . Then for every ε there exists n such that

|pk+sd2
n
− pk| ≤ ε, |qk+sd2

n
− qk| ≤ ε,(9)

for all s ≥ 0 and k = 1, 2, ..., dn.

Note that actually our goal is to prove (9) when k = 1, 2, ..., d2
n. A proof of the

theorem is given in Sect. 3.

2. FG flow

2.1. Definition. Let J : Cd → Cd. Consider the resolvent function

〈
0
∣∣(z − J)−1

∣∣ 0
〉

=

d∑

k=1

σk
z − λk

.(10)

Under the Toda flow the spectrum is stable λk = Const but masses vary with time
σk = σk(t). In FG flow case λk = λk(t) but σk = Const. Moreover, in our case (5)
time is x, σk = 1/d and T (λk(x)) = x. Recall T (z) is an expanding polynomial of
degree d with a real Julia set E, E ⊂ [−ξ, ξ], T−1 : [−ξ, ξ]→ [−ξ, ξ].

We want to get a differential equation on J . Let B be a unitary matrix such
that

JB = BΛ,

where Λ = diag{λk}. Since we can choose

λ1(x) < λ2(x) < ... < λd(x)

that holds for all x, B essentially is well defined. We put

B =
1√
d



P0(λ1) ... P0(λd)

...
...

Pd−1(λ1) ... Pd−1(λd)


 ,

where Pk(z) is the orthonormal polynomial.
We differentiate J with respect to x

J̇ = BΛ̇B−1 + ḂΛB−1 −BΛB−1ḂB−1 = F +GJ − JG,
where F := BΛ̇B−1, G := ḂB−1. By the definition F = f(J) with f(λk) = λ̇k.
Thus F = T ′(J)−1. The next step is to determine G.

Note some evident facts. G is skew–symmetric and 〈0|G = 0, so G|0〉 = 0. Also
it is easy to show, say by induction, that

d

dx
Jn = nJn−1F +GJn − JnG.

Finally, since Pk(J)|0〉 = |k〉 and

d

dx
Pk(J)− ∂

∂x
Pk(J) = FP ′k(J) +GPk(J)− Pk(J)G

we get

− ∂

∂x
Pk(J)|0〉 = FP ′k(J)|0〉+GPk(J)|0〉.(11)
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Let G+ be a lower triangle matrix with zeros on the main diagonal such that
G = G+ −G∗+. Then (11) implies

G+|k〉 = G+Pk(J)|0〉 = −(FP ′k(J)|0〉)(k)
+ .(12)

Here h
(k)
+ means that in a vector h = {hj}d−1

j=0 we have to replace all coordinates
hj , 0 ≤ j ≤ k, by zeros.

Let us rewrite (12) in other words. Define an operator D by

D|k〉 = DPk(J)|0〉 := P ′k(J)|0〉.
Then

G+ = −(FD)+.

It is easy to check using the functional representation in L2
dσ that

DJ − JD = I − |(pdPd)′〉〈Pd−1|,(13)

where pdPd(λ) is defined by (2). Note that pdPd(z) = 0 in L2
dσ, that is it has the

same roots {λk(x)} as T (z)− x. Thus pdPd(z) = C(T (z) − x) and (pdPd)
′(z) =

CT ′(z).

Definition 2.1. FG flow is given by a differential equation of the form

J̇ = F +GJ − JG(14)

with F = f(J) and G = G+ − G∗+, where G+ = −(FD)+ and D is an (upper
triangle) matrix such that commutant [D, J ] equals the unity matrix up to a one
dimensional perturbation [6].

2.2. (FD) as a Hilbert transform.

Lemma 2.2. The matrix of the operator (FD) with respect to the basis of eigen-
vectors of J has the form




1
2
T ′′(λ1)
T ′(λ1) . . . 1

λ1−λd
...

...
1

λd−λ1
. . . 1

2
T ′′(λd)
T ′(λd)







1
T ′(λ1)

. . .
1

T ′(λd)


 .(15)

Proof. Let us evaluate D in the basis of eigenvectors of J . In this basis

|P (x)〉 → 1√
d



P (λ1)

...
P (λd)


 .

As we know (pdPd)
′(λk) = CT ′(λk). Taking into account that now J is diagonal

we conclude that the diagonal entries of DJ −JD are zeros. Therefore Pd−1(λj) =
d/{CT ′(λj)}. Thus the right hand side of (13) is of the form

I −



T ′(λ1)

...
T ′(λd)



[

1
T ′(λ1) , . . . , 1

T ′(λd)

]
.

Referring again to a diagonal form of J we solve (13) and get

Dij =
1

λi − λj
T ′(λi)
T ′(λj)

, i 6= j.(16)
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To find diagonal entries Dii we have to use D|0〉 = 0. Since

|0〉 → 1→ 1√
d




1
...
1




we get

Dii = T ′(λi)
∑

k 6=i

1

T ′(λk)
1

λk − λi
.

Note that
d∑

k=1

1

T ′(λk)
1

λk − z
= − 1

T (z)− x.

Therefore

Dii

T ′(λi)
= lim
z→λi

{
− 1

T ′(λi)
1

λi − z
− 1

T (z)− x

}

= lim
z→λi

T (z)−x
z−λi

1
T ′(λi)

− 1

T (z)− x =
1
2T
′′(λi)

(T ′(λi))2
.

(17)

Thus (16) and (17) finish the proof.

2.3. Trace of (FD)∗(FD).

Lemma 2.3. Let L2 be a Ruelle operator of the form

L2g(x) =
1

d

∑

Ty=x

(
g

T ′2

)
(y)(18)

and let S(T ) be the Schwarz derivative of T , S(T ) = T ′′′

T ′ − 3
2

(
T ′′

T ′

)2

. Then

1

d
tr{(FD)∗(FD)} = −1

3
L2{S(T)}.

Proof. First we simplify

ui =
∑

k 6=i

1

(λi − λk)2
= lim
z→λi




∑

T (λ)=x

1

(z − λ)2
− 1

(z − λi)2



 .(19)

Note that
∑

T (λ)=x

1

(z − λ)
=

T ′(z)
T (z)− x.

That is
∑

T (λ)=x

1

(z − λ)2
=
T ′2(z)− T ′′(z)(T (z)− x)

(T (z)− x)2
.

So passing in a usual way to the limit in (19) we get

ui =
1
2 (T ′′)2 − 2

3T
′T ′′′

2(T ′)2
(λi).(20)
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This means that a diagonal entry of the operator (FD)∗(FD) with respect to the
basis of eigenvectors of J has the form

1

T ′2

{(
1

2

T ′′

T ′

)2

(λi) + ui

}
=

1

T ′2
(T ′′)2 − 2

3T
′T ′′′

2(T ′)2
(λi) = −1

3

(
S(T )

T ′2

)
(λi).

Naturally, in the same way we can find off diagonal entries of the matrix of the
operator (FD)∗(FD).

Lemma 2.4.

{(FD)∗(FD)}ij =
1

T ′(λi)
1

(λi − λj)2

1

T ′(λi)
.

We would consider ∆ := (FDF−1)∗(FDF−1) as a counterpart of Laplacian due
to the following proposition.

Corollary 2.5. ∆ is a positive operator that satisfies

[J, [J,∆]] = 2d|0〉〈0| − 2.

Proof. See Lemma 2.4.

Our plan to estimate [G, J ] in (8) was based on the conjecture ||(FD)n|| ∼ κn

with κ < 1 (everything that goes to zero in the subject goes to zero as geometric
progression). That would give an estimation on G:

||(Gn)+|| ∼ κnn log d,

since (Gn)+ = −(FD)n+ and we are done. The following proposition shows that,
in fact, ||(FD)n|| 6→ 0.

Proposition 2.6.

lim
n→∞

1

dn
tr{(FD)∗n(FD)n} = −1

3
(I− L2)

−1L2S(T)(21)

Proof. Let us use the Chain Rule for the Schwarz derivative

S(Tn+1) = S(Tn) ◦ TT ′2 + S(T ).

Since L2{g ◦ TT ′2} = g holds for every function g, we have Ln+1
2 {S(Tn) ◦ TT ′2} =

Ln2S(Tn) and therefore

Ln+1
2 S(Tn+1) = Ln2S(Tn) + Ln+1

2 S(T ) = L2S(T ) + ...+ Ln+1
2 S(T ).(22)

The spectral radius of L2 less than 1/d2 (see Lemma 3.2). So (22) completes the
proof.

Remark. We still believe in the limit periodic property of J(µ). Recall that we
have to estimate not (FD)n itself but the commutator [Gn, Jn]. Probably it worth
to mention that the right hand side of the commutant identity for (FD)n,

(FD)nJn − Jn(FD)n = Fn − dn|0〉〈0|Fn
goes to zero in norm (it’s again Lemma 3.2). That is asymptotically (FD)n and
Jn commute.
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3. Partial result in the right direction

3.1. Renormalization equation. Let

Lg(x) =
1

d

∑

Ty=x

g(y)

be a Ruelle operator associated with an expanding polynomial T (z). If J̃ is the

Jacobi matrix associated with a measure σ̃ supported on E, J̃ := J̃(σ̃), then the
Renormalization Equation

V ∗(z − J)−1V = (T (z)− J̃)−1T ′(z)/d, V |k〉 = |kd〉,(23)

has a unique solution J := J(σ), where σ := L∗(σ̃) [2], [8]. It follows basically from
the identity (

L
1

z − y (g ◦ T )(y)

)
(x) =

T ′(z)/d
T (z)− xg(x)

and the functional representations of both operators in L2
dσ and L2

dσ̃ respectively.
Note that (23) becomes (7) if σ̃ = µ, since for the balanced measure we have
µ = L∗(µ).

Lemma 3.1. Let J (s) be the s-th d× d block of the matrix J , that is

J (s) =




qsd psd+1

psd+1 qsd+1 psd+2

. . .
. . .

. . .

psd+d−2 qsd+d−2 psd+d−1

psd+d−1 qsd+d−1




(24)

then its resolvent function is of the form
〈
0
∣∣∣(z − J (s))−1

∣∣∣ 0
〉

=
T ′(z)/d

T (s)(z)
.(25)

Moreover at the critical points {c : T ′(c) = 0} the following decomposition in a
continued fraction holds true

T (s)(c) = T (c)− q̃s −
p̃2
s

T (c)− q̃s−1 − ...
.(26)

Proof. We write J as a d× d block matrix (each block is of infinite size):

J =




Q0 P1 S+Pd
P1 Q1 P2

. . .
. . .

. . .

Pd−2 Qd−2 Pd−1

PdS∗+ Pd−1 Qd−1



.(27)

Here Pk (respectively Qk) is a diagonal matrix Pk = diaq{pk+sd}s≥0 and S+ is the
one–sided shift. In this case V ∗ is the projection on the first block–component.

Using this representation and being well known identity for block matrices
[
A B
C D

]−1

=

[
(A−BD−1C)−1 ∗

∗ ∗

]
,
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we get

T (z)− J̃
T ′(z)/d

= z −Q0 −
[
P1, ..., S+Pd

]
{z − J1}−1



P1

...
PdS∗+


 ,(28)

where J1 is the matrix that we obtain from J by deleting the first block–row and
the first block–column in (27). Note that in (z−J1) each block is a diagonal matrix
that’s why we can easily get an inverse matrix in terms of orthogonal polynomials.

Let us introduce the following notations: everything related to J (s) has super-

script s. For instance: p
(s)
k = psd+k, 1 ≤ k ≤ d, respectively P

(s)
d and Q

(s)
d mean

orthonormal polynomials of the first and second kind. In this terms equation (28)
is equivalent to the two series of scalar relations corresponding to the diagonal and
off diagonal entries

T (z)− q̃s+1

T ′(z)/d
=
P

(s+1)
d (z)

Q
(s+1)
d (z)

− p2
ds

Q
(s)
d−1(z)/pds

Q
(s)
d (z)

(29)

and

p̃s+1

T ′(z)/d
=
p

(s)
1 ...p

(s)
d

zd−1 + ...
=

1

Q
(s)
d (z)

.(30)

We have to remind (see (25)) that

Q
(s)
d (z)

P
(s)
d (z)

=
zd−1 + ...

zd + ...
=
T ′(z)/d

T (s)(z)
.

Now, due to the Wronskian identity, if T ′(c) = 0 then

−pdsQ(s)
d−1(c) =

1

P
(s)
d (c)

.(31)

So, combining (29), (30) and (31) we get the recurrence relation

T (c)− q̃s+1 = T (s+1)(c) +
p̃2
s+1

T (s)(c)
(32)

with initial data

T (0)(c) = T (c)− q0.

3.2. psdn are exponentially small.

Lemma 3.2. Let J be the Jacobi matrix associated with iterations {Tn}n≥1 of an
expanding polynomial T , that is J = J(µ) where L∗µ = µ. Then

C−(ρd)nps ≤ psdn ≤ C+(ρd)nps(33)

with C± > 0 and 0 < ρ < 1/d.

Proof. We recall that Psd = Ps ◦ T and Qsd = (T ′/d)Qs ◦ T [2], [8]. We use an
interpolation formula

∫
Rdµ =

∑

y:Psd(y)=0

R(y)
Qsd
P ′sd

(y), degR < sd,(34)
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and the Wronskian identity

psd{Psd−1Qsd −Qsd−1Psd} = 1.(35)

Substituting (35) in (34) we obtain

p2
sd =

∫
{psdPsd−1}2 dµ =

∑

y:Psd(y)=0

{psdPsd−1(y)}2
Qsd
P ′sd

(y) =
∑

y:Psd(y)=0

1

(QsdP ′sd)(y)
.

Therefore,

p2
sd =

∑

x:Ps(x)=0

∑

y:T (y)=x

1

((T ′2/d)(QsP ′s) ◦ T )(y)

=
∑

x:Ps(x)=0

1

(QsP ′s)(x)





1

d

∑

y:T (y)=x

d2

T ′2(y)





=
∑

x:Ps(x)=0

{psPs−1(x)}2
Qs
P ′s

(x)





1

d

∑

y:T (y)=x

d2

T ′2(y)





Now we use the Ruelle version of the Perron–Frobenius theorem [7], [5] with respect
to L2 (18). According to this theorem

1

ρ2n
Ln2 g → h(x)

∫
g dν,

uniformly on x with a certain continuous function h > 0 and positive measure ν;
ρ2 is the spectral radius of L2. Combining this with the interpolation formula we
get both–sided estimate (33).

We only have to show that (ρd) < 1. Let b(z) be the complex Green’s function
of the domain C \ E with respect to infinity. Consider the sequence of functions
{fn}n≥1, where fn(z) := (bdn−1Pdn−1)(z). It is a multiple–valued function in the

domain C \E with a single–valued modulus which has a harmonic majorant un(z):
|fn(z)|2 ≤ un(z). Moreover, un(∞) = ||Pdn−1||2L2

dµ
= 1. We claim that fn should

go to zero pointwise. If not then we can find a subsequence {fnk} that converges to
a non trivial function f . However, in this case, (bf)(z) is a non trivial single valued
in C \ E function, |(bf)(z)|2 has a harmonic majorant and (bf)(∞) = 0. This
contradicts to the well-known fact that analytic capacity (that is the Lebesgue
measure in this case) of E is zero.

Therefore the sequence converges to zero. In particular

(bdn−1Pdn−1)(∞) =
1

p1...pdn−1
=
pdn
p1
→ 0, n→∞.

But
pdn
p1
∼ (ρd)n, thus (ρd) < 1.

Remark 3.3. Let us mention here that qsd = q0 since

qsd =

∫
yP 2

sd dµ =

∫
yP 2

s ◦ T dL∗µ =

∫
(Ly)P 2

s dµ

and Ly = q0.
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3.3. The result. First we prove an (undoubtedly well–known and simple)

Lemma 3.4. Assume that two measures σ and σ̃ are mutually absolutely continu-
ous. Moreover, dσ̃ = f dσ and 1 − ε ≤ f ≤ (1 − ε)−1. Let us associate with these

measures Jacobi matrices J = J(σ), J̃ = J(σ̃). Then for their coefficients we have

|p̃s − ps| ≤
ε

1− ε ||J ||.

Proof. Let us use an extreme property of orthogonal polynomials,

p̃2
1...p̃

2
s =

∫
p̃2

1...p̃
2
sP̃

2
s dσ̃ ≥ (1− ε)

∫
{zs + ...}2 dσ

≥(1− ε) inf
{P=zs+...}

∫
P 2 dσ = (1− ε)p2

1...p
2
s.

Similarly

p2
1...p

2
s−1 ≥ (1− ε)p̃2

1...p̃
2
s−1.

Therefore

1

(1− ε)2
p2
s ≥ p̃2

s ≥ (1− ε)2p2
s

and hence

−εps ≤ p̃s − ps ≤
ε

1− εps.

Now, we are in position to prove Theorem 1.2.

Proof. As it follows from Lemma 3.1

T (s)(c) = T (c)− qs − p2
s

∫
dν(s)(x)

T (c)− x.

Here ν(s) is a discrete measure such that supp{ν(s)} ⊂ [−ξ, ξ], ν(s)([−ξ, ξ]) = 1,
recall that [−ξ, ξ] is the smallest interval containing the Julia set E. In particular,

T (sdn)(c) = T (c)− q0 − p2
sdn

∫
dν(sdn)(x)

T (c)− x .

Now, since

dist{c:T ′(c)=0}{T (c), [−ξ, ξ]} = δ > 0,

for every ε > 0 there exists n such that

(1− ε) ≤ T (sdn)(c)

T (c)− q0
≤ (1− ε)−1

(here we used Lemma 3.2). Recall (25), so, Lemma 3.4 completes the proof.
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